Skip to main content

Training Deep Autoencoder via VLC-Genetic Algorithm

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10635))

Included in the following conference series:

Abstract

Recently, both supervised and unsupervised deep learning techniques have accomplished notable results in various fields. However neural networks with back-propagation are liable to trapping at local minima. Genetic algorithms have been popular as a class of optimization techniques which are good at exploring a large and complex space in an intelligent way to find values close to the global optimum.

In this paper, a variable length chromosome genetic algorithm assisted deep autoencoder is proposed. Firstly, the training of autoencoder is done with the help of variable length chromosome genetic algorithm. Secondly, a classifier is used for the classification of encoded data and compare the classification accuracy with other state-of-the-art methods. The experimental results show that the proposed method achieves competitive results and produce sparser networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., LeCun, Y., et al.: Scaling learning algorithms towards AI. Large-scale Kernel Mach. 34, 1–41 (2007)

    Google Scholar 

  2. Utgoff Hinton, G.E., Osindero, S., Teh, Y.-W.: Many-layered learning. Neural Comput. 14, 2497–2529 (2002). MIT Press

    Article  Google Scholar 

  3. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006). MIT Press

    Article  MATH  MathSciNet  Google Scholar 

  4. Freund, Y., Haussler, D.: Unsupervised learning of distributions of binary vectors using two layer networks, Computer Research Laboratory, University of California, Santa Cruz (1994)

    Google Scholar 

  5. Bengio, Y., Lamblin, P., Dan, P., et al.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, vol. 19, p. 153. MIT Press (2007)

    Google Scholar 

  6. Ranzato, M., Poultney, C., Chopra, S., et al.: Efficient learning of sparse representations with an energy-based model. In: Proceedings of NIPS (2007)

    Google Scholar 

  7. Bengio, Y., et al.: Learning deep architectures for AI. In: Foundations and Trends in Machine Learning, vol. 2, pp. 1–127. Now Publishers, Inc. (2009)

    Google Scholar 

  8. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised embedding. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 639–655. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_34

    Chapter  Google Scholar 

  9. Mobahi, H., Collobert, R., Weston, J.: Deep learning from temporal coherence in video. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 737–744. ACM (2009)

    Google Scholar 

  10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks, vol. 313, pp. 504–507. American Association for the Advancement of Science (2006)

    Google Scholar 

  11. Vincent, P., Larochelle, H., Bengio, Y., et al.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  12. Ahmed, A., Yu, K., Xu, W., Gong, Y., Xing, E.: Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 69–82. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_6

    Chapter  Google Scholar 

  13. Osindero, S., Hinton, G.E.: Modeling image patches with a directed hierarchy of Markov random fields. In: Advances in Neural Information Processing Systems, pp. 1121–1128 (2008)

    Google Scholar 

  14. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, pp. 791–798. ACM (2007)

    Google Scholar 

  15. Hinton, G.E., Salakhutdinov, R.R.: Using deep belief nets to learn covariance kernels for Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 1249–1256 (2008)

    Google Scholar 

  16. Levner, I.: Data Driven Object Segmentation. Citeseer (2009)

    Google Scholar 

  17. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: Advances in Neural Information Processing Systems, pp. 1081–1088 (2009)

    Google Scholar 

  18. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167. ACM (2008)

    Google Scholar 

  19. Ranzato, M.A., Szummer, M.: Semi-supervised learning of compact document representations with deep networks. In: Proceedings of the 25th International Conference on Machine Learning, pp. 792–799. ACM (2008)

    Google Scholar 

  20. David, O.E., Greental, I.: Genetic algorithms for evolving deep neural networks. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1451–1452. ACM (2014)

    Google Scholar 

  21. LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998). IEEE

    Article  Google Scholar 

  22. David, S.J., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: Combinations of Genetic Algorithms and Neural Networks, pp. 1–37. IEEE (1992)

    Google Scholar 

  23. Golberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston (1989)

    Google Scholar 

  24. Koehn, P.: Combining Genetic Algorithms and Neural Networks: The Encoding Problem. Citeseer (1994)

    Google Scholar 

  25. Schiffmann, W., Joost, M., Werner, R.: Application of genetic algorithms to the construction of topologies for multilayer perceptrons. In: Albrecht, R.F., Reeves, C.R., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 675–682. Springer, Wien (1993). doi:10.1007/978-3-7091-7533-0_98

    Chapter  Google Scholar 

  26. Hancock, P.J.B., Smith, L.S.: Gannet: genetic design of a neural net for face recognition. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 292–296. Springer, Heidelberg (1991). doi:10.1007/BFb0029766

    Chapter  Google Scholar 

  27. Bishop, J.M., Bushnell, M.J., Usher, A., et al.: Genetic optimisation of neural network architectures for colour recipe prediction. In: Albrecht, R.F., Reeves, C.R., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 719–725. Springer, Wien (1993). doi:10.1007/978-3-7091-7533-0_104

    Chapter  Google Scholar 

  28. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: IJCAI 1989, vol. 89, pp. 762–767 (1989)

    Google Scholar 

  29. Zhang, M., Deng, Y., Chang, D.: A novel genetic clustering algorithm with variable-length chromosome representation. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1483–1484. ACM (2014)

    Google Scholar 

  30. Yahya, A.A., Osman, A., Ramli, A.R., et al.: Feature selection for high dimensional data: an evolutionary filter approach. Citeseer (2011)

    Google Scholar 

  31. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50, 969–978 (2009). Elsevier

    Article  Google Scholar 

  32. Brie, A.H., Morignot, P.: Genetic planning using variable length chromosomes. In: ICAPS 2005, pp. 320–329 (2005)

    Google Scholar 

  33. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: ICML Unsupervised and Transfer Learning, vol. 27, p. 1 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61271374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qazi Sami Ullah Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sami Ullah Khan, Q., Li, J., Zhao, S. (2017). Training Deep Autoencoder via VLC-Genetic Algorithm. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70096-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70095-3

  • Online ISBN: 978-3-319-70096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics