Skip to main content

Gases

  • Chapter
  • First Online:
Seamless Healthcare Monitoring
  • 1703 Accesses

Abstract

The development of wearable chemical sensors is of interest to obtain comprehensive information for health promotion. However, the development of wearable sensors faces many challenges for long-term use, easy handling, response time, accuracy, validity, and reliability. There are several imitations to produce simple wearable sensors, and above these, optical gas sensors are a promising tool. Monitoring of oxygenation by pulse oximeter and components of expired gas by capnometer is a successful technology. In this section, these two sensors are reviewed including sensor principle and limitation of use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoyagi, T., Kishi, M., Yamaguchi, K., & Watanabe, S. (1974). Improvement of ear-piece oximeter. Proceedings of the 13th annual meeting of the Japanese Society of Medical and Biological Engineering Osaka, 90/91.

    Google Scholar 

  2. Inai T. (1992). Drive circuit for light-emitting diode in pulse oximeter. Patent US5590652 1992.

    Google Scholar 

  3. Agashe, G. S., Coakley, J., & Mannheimer, P. D. (2006). Forehead pulse oximetry: Headband use helps alleviate false low readings likely related to venous pulsation artifact. Anesthesiology, 105(6), 1111–1116.

    Article  Google Scholar 

  4. Mannheimer, P. D. (2007). The light-tissue interaction of pulse oximetry. Anesthesia and Analgesia, 105(6 Suppl), S10–S17. Review.

    Article  Google Scholar 

  5. Budidha, K., & Kyriacou, P. A. (2017). In vivo investigation of ear canal pulse oximetry during hypothermia. Journal of Clinical Monitoring and Computing. Published Online 27 January.

    Google Scholar 

  6. Takeda, S., Kobayashi, N., & Kubota, H. (2005). Apparatus for determining concentrations of light absorbing substances in blood. Patent US7313426: 2005.

    Google Scholar 

  7. Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable photoplethysmographic sensors—past and present. Electronics, 3(2), 282–302.

    Article  Google Scholar 

  8. Reynolds, K. J., Palayiwa, E., Moyle, J. T., Sykes, M. K., & Hahn, C. E. (1993). The effect of dyshemoglobins on pulse oximetry: Part I, Theoretical approach and Part II, Experimental results using an in vitro test system. Journal of Clinical Monitoring, 9(2), 81–90.

    Article  Google Scholar 

  9. Suzaki, H., Kobayashi, N., Nagaoka, T., Iwasaki, K., Umezu, M., Takeda, S., & Togawa, T. (2006). Noninvasive measurement of total hemoglobin and hemoglobin derivatives using multiwavelength pulse spectrophotometry -In vitro study with a mock circulatory system. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 799–802.

    Google Scholar 

  10. Noiri, E., Kobayashi, N., Takamura, Y., Iijima, T., Takagi, T., Doi, K., Nakao, A., Yamamoto, T., Takeda, S., & Fujita, T. (2005). Pulse total-hemoglobinometer provides accurate noninvasive monitoring. Critical Care Medicine, 33(12), 2831–2835.

    Article  Google Scholar 

  11. Barker, S. J., Curry, J., Redford, D., & Morgan, S. (2006). Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: A human volunteer study. Anesthesiology, 105(5), 892–897.

    Article  Google Scholar 

  12. Barker, S. J., & Badal, J. J. (2008). The measurement of dyshemoglobins and total hemoglobin by pulse oximetry. Current Opinion in Anaesthesiology, 21(6), 805–810.

    Article  Google Scholar 

  13. Maxim Integrated Products, Inc. (2014). MAX30100 - Pulse oximeter and heart-rate sensor IC for wearable health.

    Google Scholar 

  14. Cruz, D. F., Rodrigues, E. M. G., & Godina, R. (2016). Innovative experimental low cost electronics operated instrumentation for wearable health systems with high resolution physiological measurements. IEEE 16th international conference on Environment and Electrical Engineering (EEEIC). doi: 10.1109/EEEIC.2016.7555658.

    Google Scholar 

  15. Bartlett, M. D., Markvicka, E. J., & Majidi, C. (2016). Rapid fabrication of soft, multilayered electronics for wearable biomonitoring. Advanced Functional Materials. https://doi.org/10.1002/adfm.201602733.

  16. Texas Instruments Incorporated. AFE4490 integrated analog front-end for pulse oximeters, SBAS602H –December 2012–Revised October 2014.

    Google Scholar 

  17. Kim, J., Salvatore, G. A., Araki, H., Chiarelli, A. M., Xie, Z., Banks, A., Sheng, X., Liu, Y., Lee, J. W., Jang, K. I., Heo, S. Y., Cho, K., Luo, H., Zimmerman, B., Kim, J., Yan, L., Feng, X., Xu, S., Fabiani, M., Gratton, G., Huang, Y., Paik, U., & Rogers, J. A. (2016). Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances, 2(8), e1600418.

    Article  Google Scholar 

  18. Kim, J., Gutruf, P., Chiarelli, A. M., Heo, S.-Y., Cho, K., Xie, Z., Banks, A., Han, S., Jang, K.-I., Lee, J.-W., Lee, K.-T., Feng, X., Huang, Y., Fabiani, M., Gratton, G., Paik, U., & Rogers, J. A. (2016). Miniaturized battery-free wireless systems for wearable pulse oximetry. Advanced Functional Materials. https://doi.org/10.1002/adfm.201770007.

  19. Severinghaus, J. W., & Honda, Y. (1987). History of blood gas analysis. VII. Pulse oximetry. Journal of Clinical Monitoring, 3(2), 135–138.

    Article  Google Scholar 

  20. Logan, A. G., Perlikowski, S. M., Mente, A., Tisler, A., Tkacova, R., Niroumand, M., Leung, R. S., & Bradley, T. D. (2001). High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. Journal of Hypertension, 19(12), 2271–2277.

    Article  Google Scholar 

  21. Oldenburg, O., Faber, L., Vogt, J., Dorszewski, A., Szabados, F., Horstkotte, D., & Lamp, B. (2007). Influence of cardiac resynchronisation therapy on different types of sleep disordered breathing. European Journal of Heart Failure, 9(8), 820–826. Epub 2007 Apr 27.

    Article  Google Scholar 

  22. Gami, A. S., Howard, D. E., Olson, E. J., & Somers, V. K. (2005). Day-night pattern of sudden death in obstructive sleep apnea. The New England Journal of Medicine, 352(12), 1206–1214.

    Article  Google Scholar 

  23. Gravenstein, J. S., Jaffe, M. B., Gravenstein, N., & Paulus, D. A. (2011). Capnography (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  24. ASA Standards for Basic Anesthetic Monitoring, Committee of Origin: Standards and Practice Parameters (Approved by the ASA House of Delegates on October 21, 1986, and last amended on October 20, 2010, and last affirmed on October 28, 2015).

    Google Scholar 

  25. American Society of Anesthesiologists Task Force on Sedation and Analgesia by Non-anesthesiologists. (2002). Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology, 96, 1004–1017.

    Article  Google Scholar 

  26. http://www.apsf.org/newsletters/html/2011/fall/pdf/fall_2011.pdf. Accessed 30 July 2017.

  27. Raemer, D. B., & Calalang, I. (1991). Accuracy of end-tidal carbon dioxide tension analyzers. Journal of Clinical Monitoring, 7, 195–208.

    Article  Google Scholar 

  28. Bergman, N. A., Racknow, H., & Frumin, M. J. (1958). The collision broadening effect of nitrous oxide upon infrared analysis of carbon dioxide during anesthesia. Anesthesiology, 19, 19–26.

    Article  Google Scholar 

  29. Block, F. E., Jr., & McDonald, J. S. (1992). Sidestream versus mainstream carbon dioxide analyzer. Journal of Clinical Monitoring, 8, 139–141.

    Article  Google Scholar 

  30. Pascucci, R. C., Schena, J. A., & Thompson, J. E. (1989). Comparison of a sidestream and mainstream capnometer in infants. Critical Care Medicine, 17, 560–562.

    Article  Google Scholar 

  31. Morioka, J., Yamamori, S., & Ozaki, M. (2006). Evaluation of a compact device for capnometry of mainstream type compared with one of sidestream type in a postoperative care unit. Masui, 55, 1496–1501.

    Google Scholar 

  32. Yamamori, S., Takasaki, Y., Ozaki, M., & Iseki, H. (2008). A flow-through capnometer for obstructive sleep apnea. Journal of Clinical Monitoring and Computing, 22, 209–220.

    Article  Google Scholar 

  33. Sakata, D. J., Matsubara, I., Nishant, A. G., Westenskow, D. R., White, J. L., Yamamori, S., Egan, T. D., & Pace, N. L. (2009). Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient. Journal of Clinical Monitoring and Computing, 23, 115–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobayashi, N., Yamamori, S. (2018). Gases. In: Tamura, T., Chen, W. (eds) Seamless Healthcare Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-319-69362-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69362-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69361-3

  • Online ISBN: 978-3-319-69362-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics