Skip to main content

Arterial Blood Pressure

  • Chapter
Hemodynamic Monitoring

Part of the book series: Lessons from the ICU ((LEICU))

  • 4209 Accesses

Abstract

The measurement of blood pressure (BP) is a key component of hemodynamic monitoring in various fields of medicine, including intensive care medicine, emergency medicine, and anesthesiology. Thus, it is crucial to understand the different technologies available for BP monitoring. This includes understanding the underlying measurement principles of invasive and noninvasive techniques and knowing their advantages and limitations in different clinical settings. In this chapter, we give a brief overview of the history of technologies for BP measurement, and we describe the available technologies for BP monitoring used in intensive care medicine with regard to their measurement principles, advantages, limitations, and clinical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Booth J. A short history of blood pressure measurement. Proc R Soc Med. 1977;70:793–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lewis O. Stephen Hales and the measurement of blood pressure. J Hum Hypertens. 1994;8:865–71.

    CAS  PubMed  Google Scholar 

  3. O'Brien E, Fitzgerald D. The history of blood pressure measurement. J Hum Hypertens. 1994;8:73–84.

    CAS  PubMed  Google Scholar 

  4. Nichols WW, Nichols WW, McDonald DA. McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. 6th ed. London: CRC Press; 2011.

    Google Scholar 

  5. Marey E-J. Recherches sur le pouls au moyen d’un nouvel appareil enregistreur le sphygmographe. Paris: Thunot; 1860.

    Google Scholar 

  6. Mahomed F. The physiology and clinical use of the sphygmograph. Med Times Gazette. 1872;1:62.

    Google Scholar 

  7. Saugel B, Dueck R, Wagner JY. Measurement of blood pressure. Best Pract Res Clin Anaesthesiol. 2014;28:309–22.

    PubMed  Google Scholar 

  8. Perloff D, Grim C, Flack J, Frohlich ED, Hill M, McDonald M, et al. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88:2460–70.

    CAS  PubMed  Google Scholar 

  9. Hill L, Barnard H. A simple and accurate form of sphygmometer or arterial pressure gauge contrived for clinical use. Br Med J. 1897;2:904.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Erlanger J, Hooker DR. An experimental study of blood-pressure and of pulse-pressure in man. John Hopkins Hosp Rep. 1904;XII:145–378.

    Google Scholar 

  11. Posey JA, Geddes LA, Williams H, Moore AG. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure. 1. Cardiovasc Res Cent Bull. 1969;8:15–25.

    CAS  PubMed  Google Scholar 

  12. Alpert BS, Quinn D, Gallick D. Oscillometric blood pressure: a review for clinicians. J Am Soc Hypertens. 2014;8:930–8.

    PubMed  Google Scholar 

  13. Ogedegbe G, Pickering T. Principles and techniques of blood pressure measurement. Cardiol Clin. 2010;28:571–86.

    PubMed  PubMed Central  Google Scholar 

  14. Geddes LA, Voelz M, Combs C, Reiner D, Babbs CF. Characterization of the oscillometric method for measuring indirect blood pressure. Ann Biomed Eng. 1982;10:271–80.

    CAS  PubMed  Google Scholar 

  15. Gu WJ, Tie HT, Liu JC, Zeng XT. Efficacy of ultrasound-guided radial artery catheterization: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2014;18:R93.

    PubMed  PubMed Central  Google Scholar 

  16. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6:199–204.

    PubMed  PubMed Central  Google Scholar 

  17. Numaguchi A, Adachi YU, Aoki Y, Ishii Y, Suzuki K, Obata Y, et al. Radial artery cannulation decreases the distal arterial blood flow measured by power Doppler ultrasound. J Clin Monit Comput. 2015;29:653–7.

    PubMed  Google Scholar 

  18. Ortega R, Connor C, Kotova F, Deng W, Lacerra C. Use of pressure transducers. N Engl J Med. 2017;376:e26.

    PubMed  Google Scholar 

  19. McGhee BH, Bridges EJ. Monitoring arterial blood pressure: what you may not know. Crit Care Nurse. 2002;22:60–4, 66–70, 3 passim.

    PubMed  Google Scholar 

  20. Gardner RM. Direct blood pressure measurement–dynamic response requirements. Anesthesiology. 1981;54:227–36.

    CAS  PubMed  Google Scholar 

  21. Kleinman B, Powell S, Kumar P, Gardner RM. The fast flush test measures the dynamic response of the entire blood pressure monitoring system. Anesthesiology. 1992;77:1215–20.

    CAS  PubMed  Google Scholar 

  22. Petrie JC, O'Brien ET, Littler WA, de Swiet M. Recommendations on blood pressure measurement. Br Med J (Clin Res Ed). 1986;293:611–5.

    CAS  Google Scholar 

  23. Ramsey M 3rd. Noninvasive automatic determination of mean arterial pressure. Med Biol Eng Comput. 1979;17:11–8.

    PubMed  Google Scholar 

  24. Smulyan H, Safar ME. Blood pressure measurement: retrospective and prospective views. Am J Hypertens. 2011;24:628–34.

    PubMed  Google Scholar 

  25. van Montfrans GA. Oscillometric blood pressure measurement: progress and problems. Blood Press Monit. 2001;6:287–90.

    PubMed  Google Scholar 

  26. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005;111:697–716.

    PubMed  Google Scholar 

  27. Picone DS, Schultz MG, Otahal P, Aakhus S, Al-Jumaily AM, Black JA, et al. Accuracy of cuff-measured blood pressure: systematic reviews and meta-analyses. J Am Coll Cardiol. 2017;70:572–86.

    PubMed  Google Scholar 

  28. Lakhal K, Ehrmann S, Boulain T. Non-invasive blood pressure monitoring in the critically ill: time to abandon the intra-arterial catheter? Chest. 2018;153:1023–39.

    PubMed  Google Scholar 

  29. Lakhal K, Ehrmann S, Martin M, Faiz S, Reminiac F, Cinotti R, et al. Blood pressure monitoring during arrhythmia: agreement between automated brachial cuff and intra-arterial measurements. Br J Anaesth. 2015;115:540–9.

    CAS  PubMed  Google Scholar 

  30. Lakhal K, Martin M, Ehrmann S, Faiz S, Rozec B, Boulain T. Non-invasive blood pressure monitoring with an oscillometric brachial cuff: impact of arrhythmia. J Clin Monit Comput. 2018;32:707–15.

    PubMed  Google Scholar 

  31. Lehman LW, Saeed M, Talmor D, Mark R, Malhotra A. Methods of blood pressure measurement in the ICU. Crit Care Med. 2013;41:34–40.

    PubMed  PubMed Central  Google Scholar 

  32. Wax DB, Lin HM, Leibowitz AB. Invasive and concomitant noninvasive intraoperative blood pressure monitoring: observed differences in measurements and associated therapeutic interventions. Anesthesiology. 2011;115:973–8.

    PubMed  Google Scholar 

  33. Penaz J, Voigt A, Teichmann W. Contribution to the continuous indirect blood pressure measurement. Z Gesamte Inn Med. 1976;31:1030–3.

    CAS  PubMed  Google Scholar 

  34. Pressman GL, Newgard PM. A transducer for the continuous external measurement of arterial blood pressure. IEEE Trans Biomed Eng. 1963;10:73–81.

    CAS  PubMed  Google Scholar 

  35. Wesseling KH, Settels JJ, van der Hoeven GM, Nijboer JA, Butijn MW, Dorlas JC. Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger. Cardiovasc Res. 1985;19:139–45.

    CAS  PubMed  Google Scholar 

  36. Takazawa K, O’Rourke MF, Fujita M, Tanaka N, Takeda K, Kurosu F, et al. Estimation of ascending aortic pressure from radial arterial pressure using a generalised transfer function. Z Kardiol. 1996;85(Suppl 3):137–9.

    PubMed  Google Scholar 

  37. Imholz BP, Parati G, Mancia G, Wesseling KH. Effects of graded vasoconstriction upon the measurement of finger arterial pressure. J Hypertens. 1992;10:979–84.

    CAS  PubMed  Google Scholar 

  38. Fortin J, Marte W, Grullenberger R, Hacker A, Habenbacher W, Heller A, et al. Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput Biol Med. 2006;36:941–57.

    CAS  PubMed  Google Scholar 

  39. Wesseling KH. Finger arterial pressure measurement with Finapres. Z Kardiol. 1996;85(Suppl 3):38–44.

    PubMed  Google Scholar 

  40. Martina JR, Westerhof BE, van Goudoever J, de Beaumont EM, Truijen J, Kim YS, et al. Noninvasive continuous arterial blood pressure monitoring with Nexfin(R). Anesthesiology. 2012;116:1092–103.

    CAS  PubMed  Google Scholar 

  41. Gizdulich P, Prentza A, Wesseling KH. Models of brachial to finger pulse wave distortion and pressure decrement. Cardiovasc Res. 1997;33:698–705.

    CAS  PubMed  Google Scholar 

  42. Stein PD, Blick EF. Arterial tonometry for the atraumatic measurement of arterial blood pressure. J Appl Physiol. 1971;30:593–6.

    CAS  PubMed  Google Scholar 

  43. Drzewiecki GM, Melbin J, Noordergraaf A. Arterial tonometry: review and analysis. J Biomech. 1983;16:141–52.

    CAS  PubMed  Google Scholar 

  44. Meidert AS, Huber W, Hapfelmeier A, Schofthaler M, Muller JN, Langwieser N, et al. Evaluation of the radial artery applanation tonometry technology for continuous noninvasive blood pressure monitoring compared with central aortic blood pressure measurements in patients with multiple organ dysfunction syndrome. J Crit Care. 2013;28:908–12.

    PubMed  Google Scholar 

  45. Nelson MR, Stepanek J, Cevette M, Covalciuc M, Hurst RT, Tajik AJ. Noninvasive measurement of central vascular pressures with arterial tonometry: clinical revival of the pulse pressure waveform. Mayo Clin Proc. 2010;85:460–72.

    PubMed  PubMed Central  Google Scholar 

  46. Kemmotsu O, Ueda M, Otsuka H, Yamamura T, Okamura A, Ishikawa T, et al. Blood pressure measurement by arterial tonometry in controlled hypotension. Anesth Analg. 1991;73:54–8.

    CAS  PubMed  Google Scholar 

  47. Dueck R, Goedje O, Clopton P. Noninvasive continuous beat-to-beat radial artery pressure via TL-200 applanation tonometry. J Clin Monit Comput. 2012;26:75–83.

    PubMed  Google Scholar 

  48. Drzewiecki G, Hood R, Apple H. Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Ann Biomed Eng. 1994;22:88–96.

    CAS  PubMed  Google Scholar 

  49. Saugel B, Fassio F, Hapfelmeier A, Meidert AS, Schmid RM, Huber W. The T-Line TL-200 system for continuous non-invasive blood pressure measurement in medical intensive care unit patients. Intensive Care Med. 2012;38:1471–7.

    PubMed  Google Scholar 

  50. Saugel B, Meidert AS, Hapfelmeier A, Eyer F, Schmid RM, Huber W. Non-invasive continuous arterial pressure measurement based on radial artery tonometry in the intensive care unit: a method comparison study using the T-Line TL-200pro device. Br J Anaesth. 2013;111:185–90.

    CAS  PubMed  Google Scholar 

  51. Meidert AS, Huber W, Muller JN, Schofthaler M, Hapfelmeier A, Langwieser N, et al. Radial artery applanation tonometry for continuous non-invasive arterial pressure monitoring in intensive care unit patients: comparison with invasively assessed radial arterial pressure. Br J Anaesth. 2014;112:521–8.

    CAS  PubMed  Google Scholar 

  52. Szmuk P, Pivalizza E, Warters RD, Ezri T, Gebhard R. An evaluation of the T-Line Tensymeter continuous noninvasive blood pressure device during induced hypotension. Anaesthesia. 2008;63:307–12.

    CAS  PubMed  Google Scholar 

  53. Bartels K, Esper SA, Thiele RH. Blood pressure monitoring for the anesthesiologist: a practical review. Anesth Analg. 2016;122:1866–79.

    CAS  PubMed  Google Scholar 

  54. Kim SH, Lilot M, Sidhu KS, Rinehart J, Yu Z, Canales C, et al. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120:1080–97.

    PubMed  Google Scholar 

  55. Ameloot K, Palmers PJ, Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21:232–9.

    PubMed  Google Scholar 

  56. Saugel B, Reuter DA. Are we ready for the age of non-invasive haemodynamic monitoring? Br J Anaesth. 2014;113:340–3.

    CAS  PubMed  Google Scholar 

  57. Vos JJ, Poterman M, Mooyaart EA, Weening M, Struys MM, Scheeren TW, et al. Comparison of continuous non-invasive finger arterial pressure monitoring with conventional intermittent automated arm arterial pressure measurement in patients under general anaesthesia. Br J Anaesth. 2014;113:67–74.

    CAS  PubMed  Google Scholar 

  58. Schwartz G, Tee BC, Mei J, Appleton AL, Kim do H, Wang H, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun. 2013;4:1859.

    PubMed  Google Scholar 

  59. Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim YS, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun. 2014;5:4496.

    CAS  PubMed  Google Scholar 

  60. Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science. 2016;354:1257–60.

    CAS  PubMed  Google Scholar 

  61. Michard F. Hemodynamic monitoring in the era of digital health. Ann Intensive Care. 2016;6:15.

    PubMed  PubMed Central  Google Scholar 

  62. Michard F. A sneak peek into digital innovations and wearable sensors for cardiac monitoring. J Clin Monit Comput. 2017;31:253–9.

    PubMed  Google Scholar 

  63. Michard F, Pinsky MR, Vincent JL. Intensive care medicine in 2050: NEWS for hemodynamic monitoring. Intensive Care Med. 2017;43:440–2.

    PubMed  Google Scholar 

  64. Michard F, Gan TJ, Kehlet H. Digital innovations and emerging technologies for enhanced recovery programmes. Br J Anaesth. 2017;119:31.

    CAS  PubMed  Google Scholar 

  65. Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–9.

    PubMed  Google Scholar 

  66. Benes J, Simanova A, Tovarnicka T, Sevcikova S, Kletecka J, Zatloukal J, et al. Continuous non-invasive monitoring improves blood pressure stability in upright position: randomized controlled trial. J Clin Monit Comput. 2015;29:11–7.

    PubMed  Google Scholar 

  67. Meidert AS, Nold JS, Hornung R, Paulus AC, Zwissler B, Czerner S. The impact of continuous non-invasive arterial blood pressure monitoring on blood pressure stability during general anaesthesia in orthopaedic patients: a randomised trial. Eur J Anaesthesiol. 2017;34:716.

    PubMed  Google Scholar 

  68. Ilies C, Kiskalt H, Siedenhans D, Meybohm P, Steinfath M, Bein B, et al. Detection of hypotension during Caesarean section with continuous non-invasive arterial pressure device or intermittent oscillometric arterial pressure measurement. Br J Anaesth. 2012;109:413–9.

    CAS  PubMed  Google Scholar 

  69. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013;119:507–15.

    Google Scholar 

  70. Nowak RM, Sen A, Garcia AJ, Wilkie H, Yang JJ, Nowak MR, et al. Noninvasive continuous or intermittent blood pressure and heart rate patient monitoring in the ED. Am J Emerg Med. 2011;29:782–9.

    PubMed  Google Scholar 

  71. Wagner JY, Prantner JS, Meidert AS, Hapfelmeier A, Schmid RM, Saugel B. Noninvasive continuous versus intermittent arterial pressure monitoring: evaluation of the vascular unloading technique (CNAP device) in the emergency department. Scand J Trauma Resusc Emerg Med. 2014;22:8.

    PubMed  PubMed Central  Google Scholar 

  72. Siebig S, Rockmann F, Sabel K, Zuber-Jerger I, Dierkes C, Brunnler T, et al. Continuous non-invasive arterial pressure technique improves patient monitoring during interventional endoscopy. Int J Med Sci. 2009;6:37–42.

    PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

BS collaborates with Pulsion Medical Systems SE (Feldkirchen, Germany) as a member of the medical advisory board and received honoraria for giving lectures and refunds of travel expenses from Pulsion Medical Systems SE. BS received research support from Edwards Lifesciences (Irvine, CA, USA). BS received institutional research grants, unrestricted research grants, and refunds of travel expenses from Tensys Medical Inc. (San Diego, CA, USA). BS received honoraria for giving lectures and refunds of travel expenses from CNSystems Medizintechnik AG (Graz, Austria).

TWLS received honoraria from Edwards Lifesciences (Irvine, CA, USA) and Masimo Inc. (Irvine, CA, USA) for consulting and lecturing.

JLT is a member of the medical advisory board of Pulsion Medical systems and received honoraria from Edwards Lifesciences and Masimo Inc. for consulting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Teboul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Society of Intensive Care Medicine

About this chapter

Cite this chapter

Saugel, B., Scheeren, T.W.L., Teboul, JL. (2019). Arterial Blood Pressure. In: Pinsky, M.R., Teboul, JL., Vincent, JL. (eds) Hemodynamic Monitoring. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-69269-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69269-2_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69268-5

  • Online ISBN: 978-3-319-69269-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics