Skip to main content

The Role of Hybridization on the Adaptive Potential of Mediterranean Sclerophyllous Oaks: The Case of the Quercus ilex x Q. suber Complex

  • Chapter
  • First Online:
Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.

Part of the book series: Tree Physiology ((TREE,volume 7))

Abstract

Gene flow among closely related species is a not so unusual event, especially in plants. Hybridization and introgression have probably played a relevant role in the evolutionary history of the genus Quercus , for instance in the post-glacial northwards migration of European white oaks. In the same way, hybridization between the Mediterranean sclerophyllous oaks Q. ilex and Q. suber could have been determinant for the survival of the latter species during glaciations. In this chapter, evidences of the ancient introgression between these two species are revised, as well as estimations of current hybridization rates, which are very likely underrated. Pre-zygotic and post-zygotic limitations to introgression between Q. suber and Q. ilex are described. Finally, the effects of hybridization and introgression on cork quality, and the suitability of Q. ilexQ. suber as a model system for the study of introgression and the maintenance/restoration of species boundaries within the genus are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral Franco J (1990) Quercus L. In: Castroviejo S et al. (eds) Flora Ibérica 2:15–36

    Google Scholar 

  • Anderson E (1949) Hybridization of the habitat. Evol 2:1–9

    Article  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York, Oxford Series

    Google Scholar 

  • Arnold ML, Martin NH (2006) Adaptation by introgression. J Biol 8:82

    Article  Google Scholar 

  • Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N (2016) Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164:1–13

    Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Ann Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  • Boavida LC, Varela MC, Feijó J (1999) Sexual reproduction in the cork oak (Quercus suber L.). I. The progamic phase. Sex Plant Reprod 11(6):347–353

    Article  Google Scholar 

  • Boavida LC, Silva JP, Feijó JA (2001) Sexual reproduction in the cork oak (Quercus suber L). II. Crossing intra- and interspecific barriers. Sex Plant Reprod 14(3):143–152

    Article  Google Scholar 

  • Bonito A, Varone L, Gratani L (2011) Relationship between acorn size and seedling morphological and physiological traits of Quercus ilex L. from different climates. Photosynthetica 49:75–86

    Article  Google Scholar 

  • Borzi A (1881) L´llixi-Suergiu (Quercus morisii-Borzi), nuova Querce della Sardegna. Nuov Gior Bot Ital 13(1):3–10

    Google Scholar 

  • Burgarella C, Lorenzo Z, Jabbour-Zahab R, Lumaret R, Guichoux E, Petit RJ, Soto A, Gil L (2009) Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102:442–452

    Article  CAS  PubMed  Google Scholar 

  • Burger W (1975) The species-concept in Quercus. Taxon 24:45–50

    Article  Google Scholar 

  • Camus A (1936–1954) Les Chênes: monographie du genre Quercus [et Lithocarpus]. Editions Paul Lechevalier, Paris

    Google Scholar 

  • Castro-Díez P, Montserrat-Martí G (1998) Phenological pattern of fifteen Mediterranean phanerophytes from Quercus ilex communities of NE-Spain. Plant Ecol 139(1):103–112

    Article  Google Scholar 

  • Cecich RA, Haenche WW (1995) Pollination biology of northern red and black oak. 10th Central Hardwood Forest Conference:238–246

    Google Scholar 

  • Coelho AC, Lima MB, Neves D, Cravador A (2006) Genetic Diversity of Two Evergreen Oaks [Quercus suber (L.) and Quercus ilex subsp. rotundifolia (Lam.)] in Portugal using AFLP Markers. Silvae Genet 55(3):105–118

    Google Scholar 

  • Colmeiro M, Boutelou E (1854) Examen de las Encinas y demás arboles de la Peninsula Iberica que producen bellotas, con la designación de los que se llaman mestos. Imprenta de D. Jose M, Geofrin

    Google Scholar 

  • Díaz M, Møller AP, Pulido FJ (2003) Fruit abortion, developmental selection and developmental stability in Quercus ilex. Oecologia 135:378–385

    Article  PubMed  Google Scholar 

  • Díaz-Fernández PM, Climent J, Gil L (2004) Biennial acorn maturation and its relationship with flowering phenology in Iberian populations of Quercus suber. Trees-Struct Funct 18(6):615–621

    Article  Google Scholar 

  • Díez Morales E (2016) Estudio anatómico de la corteza de los híbridos Quercus ilex x Q. suber. Dissertation, Universidad Politécnica de Madrid

    Google Scholar 

  • Dodd RS, Rafii ZA (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58:261–269

    Article  PubMed  Google Scholar 

  • Ducousso A, Michaud H, Lumaret R (1993) Reproduction and gene flow in the genus Quercus. Ann Sci For 50(S1):91s–106s

    Article  Google Scholar 

  • Elena-Rosselló JA, de la Cruz PJ (1998) Levels of genetic diversity in natural, mixed populations of oak species. In: Steiner KC (ed.) Diversity and Adaptation in Oak Species. Proceedings of the 2nd meeting of Working Party 2.08.05, Genetics of Quercus, of the IUFRO. University Park, USA

    Google Scholar 

  • Elena-Rossello JA, Lumaret R, Cabrera E, Michaud H (1992) Evidence for hybridization between sympatric holm-oak and cork oak in Spain based on diagnostic enzyme markers. Vegetatio 99–100:115–118

    Article  Google Scholar 

  • Eriksson G (2017) Quercus suber—recent genetic research. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, Rome, Italy

    Google Scholar 

  • Franke R, Schreiber L (2007) Suberin-a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:1–8

    Article  Google Scholar 

  • Gómez-Casero MT, Galán C, Domínguez-Vilches E (2007) Flowering phenology of Mediterranean Quercus species in different locations (Córdoba, SW Iberian Peninsula). Acta Bot Mal 32:127–146

    Google Scholar 

  • Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Bot Gardens, London

    Google Scholar 

  • Graca J, Pereira H (2004) The periderm development in Quercus suber. IAWA J 25:325–335

    Article  Google Scholar 

  • Gricar J, Jagodic S, Prislan P (2015) Structure and seasonal changes in the bark of sessile oak (Quercus petraea). Trees 29:747–757

    Article  CAS  Google Scholar 

  • Himrane H, Camarero JJ, Gil-Pelegrín E (2004) Morphological and ecophy-siological variation of the hybrid oak Quercus subpyrenaica (Q. faginea x Q. pubescens). Trees 18:566–575

    Article  Google Scholar 

  • Howard ET (1977) Bark structure of the Southern Upland Oaks. Wood Fiber Sci 9:172–183

    Google Scholar 

  • Iwasaki M, Takahashi H, Iwakawa H, Nakagawa A, Ishikawa T, Tanaka H, Matsumura Y, Pekker I, Eshed Y, Vial-Pradel S Ito T, Watanabe Y, Ueno Y, Fukazawa H, Kojima S, Machida Y, Machida C (2013) Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis. Development 140:1958–1969

    Google Scholar 

  • Jato V, Rodríguez-Rajo FJ,·Méndez J, Aira MJ (2002) Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. Int J Biometeorol 46:176–184

    Google Scholar 

  • Jiménez MP, López de Heredia U, Collada C, Lorenzo Z, Gil L (2004) High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history. Heredity 93:510–515

    Article  PubMed  Google Scholar 

  • Joët T, Ourcival JM, Capelli M, Dussert S, Morin X (2016) Explanatory ecological factors for the persistence of desiccation-sensitive seeds in transient soil seed banks: Quercus ilex as a case study. Ann Bot-London 117(1):165–176

    Article  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2002) Plant systematics, a phylogenetic approach. Sinauer Associates, Massachusetts

    Google Scholar 

  • Kremer A (ed) (2002) Range wide distribution of chloroplast DNA diversity and pollen deposits in European white oaks: inferences about colonisation routes and management of oak genetic resources. For Ecol Manage 156:1–223

    Google Scholar 

  • Laguna M (1881) Un mesto italiano y varios mestos espanoles. Rev Montes 114:477–486

    Google Scholar 

  • Llensa de Gelcen S (1943) Sistemática, fitogeografía y utilidad forestal del hibrido x Quercus Morisii Borzi. Anales de la Escuela de peritos agrícolas y superior de agricultura y de los servicios técnicos de agricultura, vol 3. ESAB, Barcelona, pp 315–328

    Google Scholar 

  • Lodha M, Marco CF, Timmermans MCP (2013) The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2. Genes Dev 27:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López de Heredia U, Soto A (2017) Simulation analysis suggest Quercus suber x Quercus ilex hybridization could be underestimated. International Congress on cork oak trees and woodlands—conservation, management, products and challenges for the future, May 25–26, Sassari, Italy

    Google Scholar 

  • López de Heredia U, Jiménez P, Díaz-Fernández P, Gil L (2005) The Balearic Islands: a reservoir of cpDNA genetic variation for evergreen oaks. J Biogeogr 32:939–949

    Article  Google Scholar 

  • López de Heredia U, Carrion JS, Jimenez P, Collada C, Gil L (2007a) Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. J Biogeog 34(9):1505–1517

    Article  Google Scholar 

  • López de Heredia U, Jiménez P, Collada C, Simeone MC, Bellarosa R, Schirone B, Cervera MT, Gil L (2007b) Multi-Marker Phylogeny of Three Evergreen Oaks Reveals Vicariant Patterns in the Western Mediterranean. Taxon 56(4):1209–1220

    Article  Google Scholar 

  • López de Heredia U, Sánchez H, Soto A (2017a) Molecular evidence of bidirectional introgression between Quercus suber and Quercus ilex. International Congress on cork oak trees and woodlands—conservation, management, products and challenges for the future, May 25–26, Sassari, Italy

    Google Scholar 

  • López de Heredia U, Duro MJ, Soto A (2017b) Leaf morphology of progenies of Q. suber, Q. ilex, and their hybrids using multivariate and geometric morphometric analysis. International Congress on cork oak trees and woodlands—conservation, management, products and challenges for the future, May 25–26, Sassari, Italy

    Google Scholar 

  • López-Caamal A, Tovar-Sánchez E (2014) Genetic, morphological, and chemical patterns of plant hybridization. Rev Chil Hist Nat 87:1–14

    Article  Google Scholar 

  • Lumaret R, Tryphon-Dionnet M, Michaud H, Sanuy A, Ipotesi E, Born C, Mir C (2005) Phylogeographical Variation of Chloroplast DNA in Cork Oak (Quercus suber). Ann Bot-London 96(5):853–861

    Article  CAS  Google Scholar 

  • Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y (2015) The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis WIREs. Dev Biol. 4:655–671

    CAS  Google Scholar 

  • Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG (2007) The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol Ecol 16(24):5259–5266

    Article  CAS  PubMed  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20(5):229–237

    Article  PubMed  Google Scholar 

  • Matsumura Y, Ohbayashi I, Takahashi H, Kojima S, Ishibashi N, Keta S, Nakagawa A, Hayashi R, Saéz-Vázquez J, Echeverria M, Sugiyama M, Nakamura K, Machida C, Machida Y (2016) A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis. Biol Open 5(7):942–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Miguel A, de Vega-Bartol J, Marum L, Chaves I, Santo T, Leitão J, Varela MC, Miguel CM (2015) Characterization of the cork oak transcriptome dynamics during acorn development. BMC Plant Biol 15:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Mir C, Toumi L, Jarne P, Sarda V, Di Giusto F, Lumaret R (2006) Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q. suber L. and Q. canariensis Willd.): evidence from nuclear and cytoplasmic markers. Heredity 96:175–184

    Article  CAS  PubMed  Google Scholar 

  • Montserrat-Martí G, Camarero JJ, Palacio S, Pérez-Rontomé C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees 23(4):787–799

    Google Scholar 

  • Muller C (1952) Ecological control of hybridization in Quercus: A factor in the mechanism of evolution. Evolution 6:147–161

    Google Scholar 

  • Natividade JV (1936) Estudo histologico das peridermes do hibrido Quercus ilex X suber, P Cout Publ Dir G Serv Flor III(1)

    Google Scholar 

  • Ogaya R, Peñuelas J (2004) Phenological patterns of Quercus ilex, Phillyrea latifolia, and Arbutus unedo growing under a field experimental drought. Ecoscience 11(3):263–270

    Article  Google Scholar 

  • Oliveira P, Custódio AC, Branco C, Reforço I, Rodrigues F, Varela MC, Meierrose C (2003) Hybrids between cork oak and holm oak: isoenzyme analysis. For Genet 10(4):283–297

    CAS  Google Scholar 

  • Pausas JG, Pereira JS, Aronson J (2009) The Tree. In: Aronson J, Pereira JS, Pausas JG (eds) Cork Oak Woodlands on the Edge. Ecology, Adaptive Management and Restoration. Island Press, Washington, USA

    Google Scholar 

  • Peguero-Pina JJ, Sancho-Knapik D, Barron E, Camarero JJ, Vilagrosa A, Gil-Pelegrín E (2014) Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Ann Bot-London 114:301–313

    Article  Google Scholar 

  • Peñaloza-Ramírez JM, González-Rodríguez A, Mendoza-Cuenca L, Caron H, Kremer A, Oyama K (2010) Interspecific gene flow in a multispecies oak hybrid zone in the Sierra Tarahumara of Mexico. Ann Bot-London 105:389–399

    Article  Google Scholar 

  • Perea García-Calvo R (2006) Estudio de la estructura de masa de una dehesa de encina con alcornoque en “El Deheson del Encinar” (Toledo). Master Thesis, Universidad Politécnica de Madrid

    Google Scholar 

  • Perez Rodriguez A (2008) Modelizacion e introgresion en encina y alcornoque: Efecto de los parametros demograficos y adaptativos. Master Thesis, Universidad Politecnica de Madrid

    Google Scholar 

  • Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci USA 94:9996–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  CAS  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  PubMed  Google Scholar 

  • Potts B, Reid JB (1988) Hybridization as a dispersal mechanism. Evolution 42:1245–1255

    Article  PubMed  Google Scholar 

  • Pulido Neves da Costa JS (2011) Differentiation and genetic variability in cork oak populations (Quercus suber L.). Dissertation, Universidade de Lisboa

    Google Scholar 

  • Quilho T, Sousa V, Tavares F, Pereira H (2013) Bark anatomy and cell size variation in Quercus faginea. Turk J Bot 37:561–570

    Google Scholar 

  • Rafii ZA, Zavarin E, Pelleau Y (1991) Chemosystematic differentation of Quercus ilex and Q. rotundifolia based on Acorn Fatty Acids. Biochem System Ecol 19(2):163–166

    Google Scholar 

  • Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009) Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). For Ecol Manage 257:1676–1683

    Article  Google Scholar 

  • Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am J Bot 82(7):944–953

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241

    CAS  Google Scholar 

  • Rieseberg L, Wendel J (1993) Introgression and its consequences in plants. In: Harrison R (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, pp 70–109

    Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM et al (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Kim S, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    Article  PubMed  Google Scholar 

  • Rushton BS (1993) Natural hybridization within the genus Quercus L. Ann Sci For 50(suppl 1):73s–90s

    Article  Google Scholar 

  • Salomón R, Lorenzo Z, Valbuena-Carabaña M, Nicolás JL, Gil L (2012) Seed recalcitrant behavior of Iberian Quercus: a multispecies comparison. Aust J For Sci 129(3–4):182–201

    Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553

    Article  CAS  PubMed  Google Scholar 

  • Sen A, Quilho T, Pereira H (2011) Bark anatomy of Quercus cerris L. var. cerris from Turkey. Turk J Bot 35:45–55

    Google Scholar 

  • Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M (2010) A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant J 62:277–290

    Article  CAS  PubMed  Google Scholar 

  • Serra O, Chatterjee S, Figueras M, Molinas M, Stark RE (2014) Deconstructing a plant macromolecular assembly: Chemical architecture, molecular flexibility, and mechanical performance of natural and engineered potato suberins. Biomacromolecules 15:799–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sever K, Škvorc Z, Bogdan S, Franjić J, Krstonošić D, Alešković I, Kereša S, Fruk G, Jemrić T (2012) In vitro pollen germination and pollen tube growth differences among Quercus robur L. clones in response to meteorological conditions. Grana 51(1):25–34

    Article  Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436

    Article  Google Scholar 

  • Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M (2007) A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144:419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soler M, Serra O, Fluch S, Molinas M, Figueras M (2011) Potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation. Planta 233:933–945

    Article  CAS  PubMed  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landscape Ecol 21(6):821–836

    Article  Google Scholar 

  • Soto A, Lorenzo Z, Gil L (2003) Nuclear microsatellite markers for the identification of Quercus ilex L. and Q. suber L. hybrids. Silvae Genet 52(2):63–66

    Google Scholar 

  • Soto A, Lorenzo Z, Gil L (2007) Differences in fine-scale genetic structure and dispersal in Quercus ilex L. and Q. suber L.: consequences for regeneration of Mediterranean open woods. Heredity 99(6):601–607

    Article  CAS  PubMed  Google Scholar 

  • Soto A, López de Heredia U, Robledo-Arnuncio JJ, Gil L (2008) Simulation analysis of Quercus ilex-Quercus suber chloroplast introgression. In: Vázquez-Piqué J, Pereira H, González-Pérez A (eds) Suberwood—New challenges for the integration of cork oak forests and products. Universidad de Huelva Publicaciones, Huelva, pp 91–98

    Google Scholar 

  • Staudt M, Mir C, Joffre R, Rambal S, Bonin A, Landais D, Lumaret R (2004) Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression. New Phytol 163:573–584

    Article  CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap Press of Harvard University Press

    Google Scholar 

  • Trockenbrodt M (1991) Qualitative structural changes during bark development in Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. IAWA Bull 11:141–166

    Article  Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239

    Article  Google Scholar 

  • Varela MC, Valdiviesso T (1996) Phenological phases of Quercus suber L. flowering. For Genet 3:93–102

    Google Scholar 

  • Varela MC, Bras R, Barros IR, Oliveira P, Meierrose C (2008) Opportunity for hybridization between two oak species in mixed stands as monitored by the timing and intensity of pollen production. Forest Ecol Manag 256:1546–1551

    Article  Google Scholar 

  • Vázquez FM (2013) Micromorphological and Anatomical Characters Used to Differentiate Mediterranean Oaks. J Int Oak Soc 24:122–129

    Google Scholar 

  • Vazquez FM, Perez MC, Esparrago F, Burzaco A (1993) Hibridos del género Quercus en Extremadura. I Congreso Forestal Español 1:459–465

    Google Scholar 

  • Vázquez FM, Esparrago F, López-Marquez JA, Jaraquemada F (1992) Flowering of Quercus rotundifolia Lam. In: International workshop quercus ilex l. ecosystems: fuction, dynamics and management. Montpellier-Barcelona, CEPE/CNRS:81

    Google Scholar 

  • Vázquez FM, Suárez MA, Baselga MP (1996) Nota sobre el efecto de la temperatura y la humedad en la germinación “in vitro” del grano de polen de Quercus rotundifolia Lam., y Q. suber L. Inv Agr Sist Rec. Forest 5(2):351–359

    Google Scholar 

  • Vázquez FM, Sánchez-Gullón E, Pinto-Gomes C, Pineda MA, García D, Márquez F, Guerra MJ, Blanco J, Vilaviçosa C (2015) Three New Oak Hybrids from Southwest Iberia (Spain and Portugal). J Int Oak Soc 26:43–55

    Google Scholar 

  • Vila-Viçosa CM, Vázquez FM, Meireles C,·Pinto-Gomes C (2014) Taxonomic peculiarities of marcescent oaks (Quercus) in southern Portugal. Lazaroa 35:139–153

    Google Scholar 

  • Vitelli M, Vessella F, Cardoni S, Pollegioni P, Denk T, Grimm GW, Simeone MC (2017) Phylogeographic structuring of plastome diversity in Mediterranean oaks (Quercus Group Ilex, Fagaceae). Tree Genet Genomes 13(1):1

    Article  Google Scholar 

  • Whittemore AT, Schaal BA (1991) Interspecific gene flow in sympatric oaks. Proc Natl Acad Sci USA 88:2540–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yacine A, Bouras F (1997) Self- and cross-pollination effects on pollen tube growth and seed set in Holm oak Quercus ilex L (Fagaceae). Ann Sci For 54(5):447–462

    Article  Google Scholar 

  • Zhu A, Greaves IK, Dennis ES, Peacock WJ (2017) Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage. BMC Genomics 18:137

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unai López de Heredia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López de Heredia, U., Vázquez, F.M., Soto, Á. (2017). The Role of Hybridization on the Adaptive Potential of Mediterranean Sclerophyllous Oaks: The Case of the Quercus ilex x Q. suber Complex. In: Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.. Tree Physiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-69099-5_7

Download citation

Publish with us

Policies and ethics