Skip to main content

Conventional Methods for Mass Multiplication of AMF

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

Numerous cultivation techniques have been developed in the last few decades for mass multiplication of AM fungi. Major challenges in AM fungi propagules production are the obligate nature of these fungi and non-availability of identification techniques to identify AM fungi at growth stages. Several substrates based and substrate free production techniques have been attempted for large scale production. In the present compilation we describe major conventional methods for mass multiplication of AM fungi. Different critical parameters of substrate based and substrate free techniques and the advantages and disadvantages of both the techniques have been dealt elaborately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar MS, Abdullah SNA (2014) Mass production techniques of arbuscular mycorrhizal fungi: major advantages and disadvantages: a review. Biosci Biotechnol Res Asia 11:1199–1204

    Google Scholar 

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycol Res 100:769–782

    Google Scholar 

  • Avio L, Giovannetti M (1988) Vesicular-arbuscular mycorrhizal infection of lucerne roots in a cellulose-amended soil. Plant Soil 112:99–104

    CAS  Google Scholar 

  • Bagyaraj DJ, Manjunath A (1980) Selection of a suitable host for mass production of VA mycorrhizal inoculum. Plant Soil 55:495–498

    Google Scholar 

  • Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475

    CAS  PubMed  Google Scholar 

  • Chaurasia B, Khare PK (2006) Hordeum vulgare: a suitable host for mass production of arbuscular mycorrhizal fungi from natural soil. Appl Ecol Environ Res 4:45–53

    Google Scholar 

  • Chen B, Shen H, Li X, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229

    CAS  Google Scholar 

  • Coelho IR, Pedone-Bonfim MV, Silva FS, Maia LC (2014) Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer. Braz J Microbiol 45:1173–1178

    CAS  PubMed  Google Scholar 

  • Crush JR, Hay MJM (1981) A technique for growing mycorrhizal clover in solution culture. New Zeal J Agr Res 24:371–372

    CAS  Google Scholar 

  • da Silva JP Jr, Siqueira JO (1997) Application of synthetic formononetin to the soil as a stimulant of mycorrhizal formation in maize and soybean. Revista Brasileira de Fisiologia Vegetal 9:135–141

    Google Scholar 

  • Douds DD Jr, Schenck NC (1990) Increased sporulation of vesicular–arbuscular mycorrhizal fungi by manipulation of nutrient regimens. Appl Environ Microbiol 56:413–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douds DD Jr, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Pl Sci 85:15–21

    Google Scholar 

  • Douds DD Jr, Nagahashi G, Pfeffer PE, Reider C, Kayser WM (2006) On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Bioresour Technol 97:809–818

    CAS  PubMed  Google Scholar 

  • Dugassa DG, Grunewaldt-Stocker G, Schonbeck F (1995) Growth of Glomus intraradices and its effect on linseed (Linum usitatissimum L.) in hydroponic culture. Mycorrhiza 5:279–282

    Google Scholar 

  • Elmes RP, Mosse B (1984) Vesicular-arbuscular endomycorrhizal inoculum production II Experiments with maize (Zea mays) and other hosts in nutrient flow culture. Can J Bot 62:1531–1536

    CAS  Google Scholar 

  • Feldmann F, Grotkass C (2002) Directed inoculum production- shall be able to design AMF populations to achieve predictable symbiotic effectiveness? In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, Basel, pp 261–279

    Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions: a review. Agron Sustain Devel 30:581–599

    CAS  Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48

    Google Scholar 

  • Gaur A, Adholeya A (2002) Arbuscular-mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fert Soils 35:214–218

    CAS  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Gryndler M, Jansa J, Hrselova H, Chvatalova I, Vosatka M (2003) Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Appl Soil Ecol 22:283–287

    Google Scholar 

  • Gryndler M, Hrselova H, Sudova R, Gryndlerova H, Rezacova V, Merhautova V (2005) Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15:483–488

    CAS  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    CAS  PubMed  Google Scholar 

  • Hawkins HJ, George E (1997) Hydroponic culture of the mycorrhizal fungus Glomus mosseae with Linum usitatissimum L., Sorghum bicolor L. and Triticum aestivum L. Plant Soil 196:143–149

    CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    CAS  Google Scholar 

  • Howeler RH, Edwards DG, Asher CJ (1981) Application of flowing solution culture techniques to studies involving mycorrhizas. Plant Soil 59:179–183

    CAS  Google Scholar 

  • Howeler RH, Cadavid LF, Burckhardt E (1982a) Response of cassava to VA mycorrhizal inoculation and phosphorus application in greenhouse and field experiments. Plant Soil 69:327–339

    CAS  Google Scholar 

  • Howeler RH, Edwards DG, Asher CJ (1982b) Establishment of an effective endomycorrhizal association on cassava in flowing solution culture and its effects on phosphorus nutrition. New Phytol 90:229–238

    CAS  Google Scholar 

  • Hung LLL, Sylvia DM (1988) Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl Environ Microbiol 54:353–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ijdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    CAS  PubMed  Google Scholar 

  • Jarstfer AG, Sylvia DM (1995) Aeroponic culture of VAM fungi. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Heidelberg, pp 427–441

    Google Scholar 

  • Jarstfer AG, Sylvia DM (1997) Isolation, culture and detection of arbuscular mycorrhizal fungi. In: Hurst CJ (ed) Manual of environmental microbiology. American Society of Microbiology, Washington, DC, pp 406–412

    Google Scholar 

  • Jarstfer AG, Farmer-Koppenol SDM, Sylvia DM (1988) Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza 7:237–342

    Google Scholar 

  • Jasper DA, Robson AD, Abbot LK (1979) Phosphorus and the formation of vescicular-asbuscular mycorrhizas. Soil Biol Biochem 11:501–505

    CAS  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    PubMed  Google Scholar 

  • Lee YJ, George E (2005) Development of a nutrient film technique culture system for arbuscular mycorrhizal plants. Hortic Sci 40:378–380

    Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    CAS  Google Scholar 

  • Martin-Laurent F, Lee SK, Tham FY, Jie H, Diem HG (1999) Aerponics production of Acacia mangium saplings inoculated with AM fungi for reforestation in the tropics. Forest Ecol Manag 122:199–207

    Google Scholar 

  • Millner PD, Kitt DG (1992) The Beltsville method for soilless production of vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 2:9–15

    Google Scholar 

  • Mohammad A, Khan AG, Kuek C (2000) Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza 9:337–339

    Google Scholar 

  • Mohammad A, Mirta B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249

    Google Scholar 

  • Moreira H, Pereira SI, Marques AP, Rangel AO, Castro PM (2016) Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environ Sci Pollut Res 23:6940–6950

    CAS  Google Scholar 

  • Mosse B, Thompson JP (1984) Vesicular-arbuscular endomycorrhizal inoculum production. I. Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow culture. Can J Bot 62:1523–1530

    CAS  Google Scholar 

  • Mukhongo RW, Tumuhairwe JB, Ebanyat P, AbdelgGadir AH, Thuita M, Masso C (2016) Production and use of arbuscular mycorrhizal fungi inoculum in sub-Saharan Africa: challenges and ways of improving. Int J Soil Sci 11:108–122

    Google Scholar 

  • Pacioni G (1992) Wet-sieving and decanting techniques for the extraction of spores of vesicular-arbuscular fungi. Method Microbiol 24:317–322

    Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    CAS  Google Scholar 

  • Potty VP (1985) Cassava as an alternate host for multiplication of VAM fungi. Plant Soil 88:135–137

    Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    CAS  PubMed  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to Mycorrhiza: Historical Development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza - Function, Diversity, State of the Art. Springer International publishing AG, pp 1–7

    Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1995) Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MH, Angus JF (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239

    CAS  Google Scholar 

  • Sadhana B (2015) Mass production of AM fungal inoculum by soil based pot culture. Int J Adv Res Bio Sci 2:129–133

    CAS  Google Scholar 

  • Saranya K, Kumutha K (2011) Standardization of the substrate material for large scale production of arbuscular mycorrhizal inoculum. Int J Agric Sci 3:71–77

    CAS  Google Scholar 

  • Schenck NC (1982) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, MN

    Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    PubMed  Google Scholar 

  • Selvakumar G, Krishnamoorthy R, Kim K, Sa T (2016) Propagation technique of arbuscular mycorrhizal fungi isolated from coastal reclamation land. Eur J Soil Biol 74:39–44

    Google Scholar 

  • Sharma AK, Singh C, Akhauri P (2000) Mass culture of arbuscular mycorrhizal fungi and their role in biotechnology. Proc Ind Nat Sci Acad B66:223–238

    Google Scholar 

  • Simpson D, Daft MJ (1990) Spore production and mycorrhizal development in various tropical crop hosts infected with Glomus clarum. Plant Soil 121:171–178

    Google Scholar 

  • Smith SE, Read DJ (1997) Vesicular-arbuscular mycorrhizas in agriculture and horticulture. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis. Academic Press, London, pp 453–469

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Review paper: arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    CAS  PubMed  Google Scholar 

  • Struble JE, Skipper HD (1988) Vesicular-arbuscular mycorrhizal fungal spore production as influenced by plant species. Plant Soil 109:277–280

    Google Scholar 

  • Sylvia DM, Jarstfer AG (1992a) Sheared roots as a VA-mycorrhizal inoculum and methods for enhancing growth. US Patent 7, 574, 763 17 Mar 1992

    Google Scholar 

  • Sylvia DM, Jarstfer AG (1992b) Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 58:229–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvia DM, Schenck NC (1983) Application of superphosphate to mycorrhizal plants stimulates sporulation of phosphorus tolerant vesicular-arbuscular mycorrhizal fungi. New Phytol 95:655–661

    CAS  Google Scholar 

  • Tajini F, Suriyakup P, Vailhe H, Jansa J, Drevon JJ (2009) Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia. BMC Plant Biol 9:73. https://doi.org/10.1186/1471-2229-9-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanwar A, Aggarwal A (2013) Sugarcane Bagasse: a novel substrate for mass multiplication of Funneliformis mosseae with onion as host. J Cent Eur Agric 14(4):1502–1511

    Google Scholar 

  • Urgiles N, Strauß A, Lojan P, Schußler A (2014) Cultured arbuscular mycorrhizal fungi and native soil inocula improve seedling development of two pioneer trees in the Andean region. New Forests 45:859–874

    Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    CAS  PubMed  Google Scholar 

  • Wu CG, Liu YS, Hung LL (1995) Spore development of Entrophospora kentinensis in an aeroponic system. Mycologia 87:582–587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Saxena, A.K. (2017). Conventional Methods for Mass Multiplication of AMF. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_15

Download citation

Publish with us

Policies and ethics