Skip to main content

Gastrointestinal Hormones and the Control of Food Intake and Energy Metabolism

  • Chapter
  • First Online:
  • 2784 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Gastrointestinal (GI) hormones are increasingly recognized for their roles in the control of appetite and obesity. In this chapter, we review selected regulatory factors secreted from the gut including ghrelin, glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY), fibroblast growth factor 19 (FGF19), and bile acids as they relate to appetite, energy balance, obesity, and obesity-related disease states. We also describe emerging pharmacologic interventions that impact these hormones and promote weight loss. In this rapidly developing field, we have only limited understanding of the broad range of actions of the gastrointestinal hormones, including their interplay with gut microbiota. Not surprisingly, data in the pediatric population are limited. Further research is critical to understand how gastrointestinal hormones affect pediatric obesity and may lead to therapeutic strategies for metabolic and nutritional diseases.

This is a preview of subscription content, log in via an institution.

References

  1. Dockray GJ. Gastrointestinal hormones and the dialogue between gut and brain. J Physiol. 2014;592(14):2927–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gribble FM, Reimann F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol. 2016;78:277–99.

    Article  CAS  PubMed  Google Scholar 

  3. Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut. 2014;63(1):179–90.

    Article  CAS  PubMed  Google Scholar 

  4. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125(3):926–38.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bohorquez DV, Liddle RA. The gut connectome: making sense of what you eat. J Clin Invest. 2015;125(3):888–90.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alamuddin N, Vetter ML, Ahima RS, Hesson L, Ritter S, Minnick A, et al. Changes in fasting and prandial gut and adiposity hormones following vertical sleeve Gastrectomy or Roux-en-Y-gastric bypass: an 18-month prospective study. Obes Surg. 2017;27(6):1563–72.

    Article  PubMed  Google Scholar 

  7. Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013;98(4):E708–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J Clin Endocrinol Metab. 2015;100(9):E1225–33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.

    Article  CAS  PubMed  Google Scholar 

  10. Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141(11):4255–61.

    Article  CAS  PubMed  Google Scholar 

  11. Wierup N, Svensson H, Mulder H, Sundler F. The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept. 2002;107(1–3):63–9.

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Prudom CE, Nass R, Pezzoli SS, Oliveri MC, Johnson ML, et al. Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men. J Clin Endocrinol Metab. 2008;93(5):1980–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132(3):387–96.

    Article  CAS  PubMed  Google Scholar 

  14. Yano Y, Nakazato M, Toshinai K, Inokuchi T, Matsuda S, Hidaka T, et al. Circulating des-acyl ghrelin improves cardiovascular risk prediction in older hypertensive patients. Am J Hypertens. 2014;27(5):727–33.

    Article  CAS  PubMed  Google Scholar 

  15. Delhanty PJ, Huisman M, Baldeon-Rojas LY, van den Berge I, Grefhorst A, Abribat T, et al. Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis. FASEB J. 2013;27(4):1690–700.

    Article  CAS  PubMed  Google Scholar 

  16. Gauna C, Kiewiet RM, Janssen JA, van de Zande B, Delhanty PJ, Ghigo E, et al. Unacylated ghrelin acts as a potent insulin secretagogue in glucose-stimulated conditions. Am J Physiol Endocrinol Metab. 2007;293(3):E697–704.

    Article  CAS  PubMed  Google Scholar 

  17. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50(8):1714–9.

    Article  CAS  PubMed  Google Scholar 

  18. Foster-Schubert KE, Overduin J, Prudom CE, Liu J, Callahan HS, Gaylinn BD, et al. Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. J Clin Endocrinol Metab. 2008;93(5):1971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lomenick JP, Melguizo MS, Mitchell SL, Summar ML, Anderson JW. Effects of meals high in carbohydrate, protein, and fat on ghrelin and peptide YY secretion in prepubertal children. J Clin Endocrinol Metab. 2009;94(11):4463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tong J, Dave N, Mugundu GM, Davis HW, Gaylinn BD, Thorner MO, et al. The pharmacokinetics of acyl, des-acyl, and total ghrelin in healthy human subjects. Eur J Endocrinol. 2013;168(6):821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kahveci H, Laloglu F, Kilic O, Ciftel M, Kara M, Laloglu E, et al. Fasting and postprandial glucose, insulin, leptin, and ghrelin values in preterm babies and their mothers: relationships among their levels, fetal growth, and neonatal anthropometry. J Matern Fetal Neonatal Med. 2015;28(8):916–21.

    Article  CAS  PubMed  Google Scholar 

  22. Shimizu T, Kitamura T, Yoshikawa N, Suganuma H, Hisata K, Tanaka K, et al. Plasma levels of active ghrelin until 8 weeks after birth in preterm infants: relationship with anthropometric and biochemical measures. Arch Dis Child Fetal Neonatal Ed. 2007;92(4):F291–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Breij LM, Mulder MT, van Vark-van der Zee LC, Hokken-Koelega AC. Appetite-regulating hormones in early life and relationships with type of feeding and body composition in healthy term infants. Eur J Nutr. 2017;56(4):1725–32.

    Article  CAS  PubMed  Google Scholar 

  24. Soriano-Guillen L, Barrios V, Chowen JA, Sanchez I, Vila S, Quero J, et al. Ghrelin levels from fetal life through early adulthood: relationship with endocrine and metabolic and anthropometric measures. J Pediatr. 2004;144(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  25. Eissele R, Goke R, Willemer S, Harthus HP, Vermeer H, Arnold R, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Investig. 1992;22(4):283–91.

    Article  CAS  Google Scholar 

  26. Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem. 1986;261(25):11880–9.

    CAS  PubMed  Google Scholar 

  27. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  PubMed  Google Scholar 

  28. Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003;88(6):2706–13.

    Article  CAS  PubMed  Google Scholar 

  29. Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50(3):609–13.

    Article  CAS  PubMed  Google Scholar 

  30. Padidela R, Patterson M, Sharief N, Ghatei M, Hussain K. Elevated basal and post-feed glucagon-like peptide 1 (GLP-1) concentrations in the neonatal period. Eur J Endocrinol. 2009;160(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  31. Diaz M, Bassols J, Sebastiani G, Lopez-Bermejo A, Ibanez L, de Zegher F. Circulating GLP-1 in infants born small-for-gestational-age: breast-feeding versus formula-feeding. Int J Obes (Lond). 2015;39(10):1501–3.

    Article  CAS  Google Scholar 

  32. Polak JM, Bloom SR, Rayford PL, Pearse AG, Buchan AM, Thompson JC. Identification of cholecystokinin-secreting cells. Lancet. 1975;2(7943):1016–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ballinger A, McLoughlin L, Medbak S, Clark M. Cholecystokinin is a satiety hormone in humans at physiological post-prandial plasma concentrations. Clin Sci (Lond). 1995;89(4):375–81.

    Article  CAS  Google Scholar 

  34. Lieverse RJ, Jansen JB, Masclee AA, Lamers CB. Satiety effects of a physiological dose of cholecystokinin in humans. Gut. 1995;36(2):176–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest. 1985;75(4):1144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liddle RA. Regulation of cholecystokinin secretion by intraluminal releasing factors. Am J Phys. 1995;269(3 Pt 1):G319–27.

    CAS  Google Scholar 

  37. Huda MS, Wilding JP, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev. 2006;7(2):163–82.

    Article  CAS  PubMed  Google Scholar 

  38. Uvnas-Moberg K, Marchini G, Winberg J. Plasma cholecystokinin concentrations after breast feeding in healthy 4 day old infants. Arch Dis Child. 1993;68(1):46–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tornhage CJ, Serenius F, Uvnas-Moberg K, Lindberg T. Plasma somatostatin and cholecystokinin levels in response to feeding in preterm infants. J Pediatr Gastroenterol Nutr. 1998;27(2):199–205.

    Article  CAS  PubMed  Google Scholar 

  40. Medeiros MD, Turner AJ. Processing and metabolism of peptide-YY: pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology. 1994;134(5):2088–94.

    Article  CAS  PubMed  Google Scholar 

  41. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070–7.

    Article  CAS  PubMed  Google Scholar 

  42. Sloth B, Davidsen L, Holst JJ, Flint A, Astrup A. Effect of subcutaneous injections of PYY1-36 and PYY3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am J Physiol Endocrinol Metab. 2007;293(2):E604–9.

    Article  CAS  PubMed  Google Scholar 

  43. Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci. 2003;994:162–8.

    Article  CAS  PubMed  Google Scholar 

  44. Torang S, Bojsen-Moller KN, Svane MS, Hartmann B, Rosenkilde MM, Madsbad S, et al. In vivo and in vitro degradation of peptide YY3-36 to inactive peptide YY3-34 in humans. Am J Physiol Regul Integr Comp Physiol. 2016;310(9):R866–74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Siahanidou T, Mandyla H, Militsi H, Papassotiriou I, Chrousos G. Peptide YY (3-36) represents a high percentage of total PYY immunoreactivity in preterm and full-term infants and correlates independently with markers of adiposity and serum ghrelin concentrations. Pediatr Res. 2007;62(2):200–3.

    Article  PubMed  Google Scholar 

  46. Berseth CL, Nordyke CK, Valdes MG, Furlow BL, Go VL. Responses of gastrointestinal peptides and motor activity to milk and water feedings in preterm and term infants. Pediatr Res. 1992;31(6):587–90.

    Article  CAS  PubMed  Google Scholar 

  47. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fukumoto S. Actions and mode of actions of FGF19 subfamily members. Endocr J. 2008;55(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang F, Yu L, Lin X, Cheng P, He L, Li X, et al. Minireview: roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases. Mol Endocrinol. 2015;29(10):1400–13.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xie M-H, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, et al. FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine. 1999;11(10):729–35.

    Article  CAS  PubMed  Google Scholar 

  51. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, et al. FGF19 As a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 2011;331(6024):1621–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2(4):217–25.

    Article  CAS  PubMed  Google Scholar 

  53. Lundasen T, Galman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med. 2006;260(6):530–6.

    Article  CAS  PubMed  Google Scholar 

  54. Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, et al. FGF15/19 Regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab. 2011;13(6):729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. FGF1 And FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun. 2015;6:6980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alvarez-Sola G, Uriarte I, Latasa MU, Fernandez-Barrena MG, Urtasun R, Elizalde M, et al. Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut. 2017.; pii: gutjnl-2016-312975

    Google Scholar 

  57. Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 2000;1492(1):203–6.

    Article  CAS  PubMed  Google Scholar 

  58. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Samms RJ, Murphy M, Fowler MJ, Cooper S, Emmerson P, Coskun T, et al. Dual effects of fibroblast growth factor 21 on hepatic energy metabolism. J Endocrinol. 2015;227(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  60. Veniant MM, Sivits G, Helmering J, Komorowski R, Lee J, Fan W, et al. Pharmacologic effects of FGF21 are independent of the “Browning” of white adipose tissue. Cell Metab. 2015;21(5):731–8.

    Article  CAS  PubMed  Google Scholar 

  61. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.

    Article  CAS  PubMed  Google Scholar 

  62. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–13.

    Article  CAS  PubMed  Google Scholar 

  63. Barnett BP, Hwang Y, Taylor MS, Kirchner H, Pfluger PT, Bernard V, et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science. 2010;330(6011):1689–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Asakawa A, Inui A, Kaga T, Katsuura G, Fujimiya M, Fujino MA, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut. 2003;52(7):947–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol. 2003;23(22):7973–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kouno T, Akiyama N, Ito T, Okuda T, Nanchi I, Notoya M, et al. Ghrelin O-acyltransferase knockout mice show resistance to obesity when fed high-sucrose diet. J Endocrinol. 2016;228(2):115–25.

    Article  PubMed  Google Scholar 

  67. Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes. 2005;29(9):1130–6.

    Article  CAS  Google Scholar 

  68. Wang W, Tao YX. Ghrelin receptor mutations and human obesity. Prog Mol Biol Transl Sci. 2016;140:131–50.

    Article  CAS  PubMed  Google Scholar 

  69. Gutzwiller JP, Goke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut. 1999;44(1):81–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodriquez de Fonseca F, Navarro M, Alvarez E, Roncero I, Chowen JA, Maestre O, et al. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism. 2000;49(6):709–17.

    Article  CAS  PubMed  Google Scholar 

  71. Bagger JI, Holst JJ, Hartmann B, Andersen B, Knop FK, Vilsboll T. Effect of Oxyntomodulin, glucagon, GLP-1, and combined glucagon +GLP-1 infusion on food intake, appetite, and resting energy expenditure. J Clin Endocrinol Metab. 2015;100(12):4541–52.

    Article  CAS  PubMed  Google Scholar 

  72. van Can J, Sloth B, Jensen CB, Flint A, Blaak EE, Saris WH. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes (Lond). 2014;38(6):784–93.

    Article  CAS  Google Scholar 

  73. Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kelly AS, Rudser KD, Nathan BM, Fox CK, Metzig AM, Coombes BJ, et al. The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: a randomized, placebo-controlled, clinical trial. JAMA Pediatr. 2013;167(4):355–60.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kelly AS, Metzig AM, Rudser KD, Fitch AK, Fox CK, Nathan BM, et al. Exenatide as a weight-loss therapy in extreme pediatric obesity: a randomized, controlled pilot study. Obesity (Silver Spring). 2012;20(2):364–70.

    Article  CAS  Google Scholar 

  76. Barrera JG, Jones KR, Herman JP, D'Alessio DA, Woods SC, Seeley RJ. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J Neurosci. 2011;31(10):3904–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schmidt JB, Gregersen NT, Pedersen SD, Arentoft JL, Ritz C, Schwartz TW, et al. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am J Physiol Endocrinol Metab. 2014;306(11):E1248–56.

    Article  CAS  PubMed  Google Scholar 

  78. Harder H, Nielsen L, Tu DT, Astrup A. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care. 2004;27(8):1915–21.

    Article  CAS  PubMed  Google Scholar 

  79. Koole C, Wootten D, Simms J, Valant C, Miller LJ, Christopoulos A, et al. Polymorphism and ligand dependent changes in human glucagon-like peptide-1 receptor (GLP-1R) function: allosteric rescue of loss of function mutation. Mol Pharmacol. 2011;80(3):486–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973;84(3):488–95.

    Article  CAS  PubMed  Google Scholar 

  81. Lukaszewski L, Praissman M. Effect of continuous infusions of CCK-8 on food intake and body and pancreatic weights in rats. Am J Phys. 1988;254(1 Pt 2):R17–22.

    CAS  Google Scholar 

  82. Moran TH, Bi S. Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361(1471):1211–8.

    Article  CAS  Google Scholar 

  83. Brenner L, Ritter RC. Peptide cholesystokinin receptor antagonist increases food intake in rats. Appetite. 1995;24(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  84. Kopin AS, Mathes WF, McBride EW, Nguyen M, Al-Haider W, Schmitz F, et al. The cholecystokinin-a receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest. 1999;103(3):383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. MacIntosh CG, Morley JE, Wishart J, Morris H, Jansen JB, Horowitz M, et al. Effect of exogenous cholecystokinin (CCK)-8 on food intake and plasma CCK, leptin, and insulin concentrations in older and young adults: evidence for increased CCK activity as a cause of the anorexia of aging. J Clin Endocrinol Metab. 2001;86(12):5830–7.

    Article  CAS  PubMed  Google Scholar 

  86. Pi-Sunyer X, Kissileff HR, Thornton J, Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in obese men. Physiol Behav. 1982;29(4):627–30.

    Article  CAS  PubMed  Google Scholar 

  87. Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr. 1981;34(2):154–60.

    CAS  PubMed  Google Scholar 

  88. Greenough A, Cole G, Lewis J, Lockton A, Blundell J. Untangling the effects of hunger, anxiety, and nausea on energy intake during intravenous cholecystokinin octapeptide (CCK-8) infusion. Physiol Behav. 1998;65(2):303–10.

    Article  CAS  PubMed  Google Scholar 

  89. Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology. 1992;102(5):1654–9.

    Article  CAS  PubMed  Google Scholar 

  90. Beglinger C, Degen L, Matzinger D, D'Amato M, Drewe J. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol. 2001;280(4):R1149–54.

    Article  CAS  PubMed  Google Scholar 

  91. Funakoshi A, Miyasaka K, Matsumoto H, Yamamori S, Takiguchi S, Kataoka K, et al. Gene structure of human cholecystokinin (CCK) type-a receptor: body fat content is related to CCK type-a receptor gene promoter polymorphism. FEBS Lett. 2000;466(2–3):264–6.

    Article  CAS  PubMed  Google Scholar 

  92. de Krom M, van der Schouw YT, Hendriks J, Ophoff RA, van Gils CH, Stolk RP, et al. Common genetic variations in CCK, leptin, and leptin receptor genes are associated with specific human eating patterns. Diabetes. 2007;56(1):276–80.

    Article  PubMed  CAS  Google Scholar 

  93. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418(6898):650–4.

    Article  CAS  PubMed  Google Scholar 

  94. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006;4(3):223–33.

    Article  CAS  PubMed  Google Scholar 

  95. Schonhoff S, Baggio L, Ratineau C, Ray SK, Lindner J, Magnuson MA, et al. Energy homeostasis and gastrointestinal endocrine differentiation do not require the anorectic hormone peptide YY. Mol Cell Biol. 2005;25(10):4189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, et al. PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides. 2008;42(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  97. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.

    Article  CAS  PubMed  Google Scholar 

  98. Guo Y, Ma L, Enriori PJ, Koska J, Franks PW, Brookshire T, et al. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity (Silver Spring). 2006;14(9):1562–70.

    Article  CAS  Google Scholar 

  99. Sloth B, Holst JJ, Flint A, Gregersen NT, Astrup A. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am J Physiol Endocrinol Metab. 2007;292(4):E1062–8.

    Article  CAS  PubMed  Google Scholar 

  100. Shih PA, Wang L, Chiron S, Wen G, Nievergelt C, Mahata M, et al. Peptide YY (PYY) gene polymorphisms in the 3′-untranslated and proximal promoter regions regulate cellular gene expression and PYY secretion and metabolic syndrome traits in vivo. J Clin Endocrinol Metab. 2009;94(11):4557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ma L, Tataranni PA, Hanson RL, Infante AM, Kobes S, Bogardus C, et al. Variations in peptide YY and Y2 receptor genes are associated with severe obesity in pima Indian men. Diabetes. 2005;54(5):1598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Siddiq A, Gueorguiev M, Samson C, Hercberg S, Heude B, Levy-Marchal C, et al. Single nucleotide polymorphisms in the neuropeptide Y2 receptor (NPY2R) gene and association with severe obesity in French white subjects. Diabetologia. 2007;50(3):574–84.

    Article  CAS  PubMed  Google Scholar 

  103. Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145(6):2594–603.

    Article  CAS  PubMed  Google Scholar 

  104. Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology. 2013;154(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  105. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143(5):1741–7.

    Article  CAS  PubMed  Google Scholar 

  106. Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med. 2011;17(7–8):736–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 2010;11(3):206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 Regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest. 2014;124(2):515–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  111. Willesen MG, Kristensen P, Romer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70(5):306–16.

    Article  CAS  PubMed  Google Scholar 

  112. Tannenbaum GS, Lapointe M, Beaudet A, Howard AD. Expression of growth hormone secretagogue-receptors by growth hormone-releasing hormone neurons in the mediobasal hypothalamus. Endocrinology. 1998;139(10):4420–3.

    Article  CAS  PubMed  Google Scholar 

  113. Schaeffer M, Langlet F, Lafont C, Molino F, Hodson DJ, Roux T, et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc Natl Acad Sci U S A. 2013;110(4):1512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats. Diabetes. 2001;50(11):2438–43.

    Article  CAS  PubMed  Google Scholar 

  115. Riediger T, Traebert M, Schmid HA, Scheel C, Lutz TA, Scharrer E. Site-specific effects of ghrelin on the neuronal activity in the hypothalamic arcuate nucleus. Neurosci Lett. 2003;341(2):151–5.

    Article  CAS  PubMed  Google Scholar 

  116. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116(12):3229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494(3):528–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schele E, Bake T, Rabasa C, Dickson SL. Centrally administered ghrelin acutely influences food choice in rodents. PLoS One. 2016;11(2):e0149456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011;180:129–37.

    Article  CAS  PubMed  Google Scholar 

  120. Skibicka KP, Hansson C, Egecioglu E, Dickson SL. Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict Biol. 2012;17(1):95–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. King SJ, Isaacs AM, O'Farrell E, Abizaid A. Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area. Horm Behav. 2011;60(5):572–80.

    Article  CAS  PubMed  Google Scholar 

  122. Wei XJ, Sun B, Chen K, Lv B, Luo X, Yan JQ. Ghrelin signaling in the ventral tegmental area mediates both reward-based feeding and fasting-induced hyperphagia on high-fat diet. Neuroscience. 2015;300:53–62.

    Article  CAS  PubMed  Google Scholar 

  123. Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7(5):400–9.

    Article  CAS  PubMed  Google Scholar 

  124. Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience. 1997;77(1):257–70.

    Article  CAS  PubMed  Google Scholar 

  125. Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59(5):954–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ten Kulve JS, van Bloemendaal L, Balesar R, RG IJ, Swaab DF, Diamant M, et al. Decreased hypothalamic glucagon-like Peptide-1 receptor expression in type 2 diabetes patients. J Clin Endocrinol Metab. 2016;101(5):2122–9.

    Article  PubMed  CAS  Google Scholar 

  127. Tang-Christensen M, Larsen PJ, Goke R, Fink-Jensen A, Jessop DS, Moller M, et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Phys. 1996;271(4 Pt 2):R848–56.

    CAS  Google Scholar 

  128. Zhang J, Ritter RC. Circulating GLP-1 and CCK-8 reduce food intake by capsaicin-insensitive, nonvagal mechanisms. Am J Physiol Regul Integr Comp Physiol. 2012;302(2):R264–73.

    Article  CAS  PubMed  Google Scholar 

  129. Krieger JP, Arnold M, Pettersen KG, Lossel P, Langhans W, Lee SJ. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and Glycemia. Diabetes. 2016;65(1):34–43.

    CAS  PubMed  Google Scholar 

  130. Kastin AJ, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci. 2002;18(1–2):7–14.

    Article  CAS  PubMed  Google Scholar 

  131. Wang XF, Liu JJ, Xia J, Liu J, Mirabella V, Pang ZP. Endogenous glucagon-like Peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. Cell Rep. 2015;12(5):726–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Liddle RA, Morita ET, Conrad CK, Williams JA. Regulation of gastric emptying in humans by cholecystokinin. J Clin Invest. 1986;77(3):992–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schwartz GJ, McHugh PR, Moran TH. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. Am J Phys. 1993;265(4 Pt 2):R872–6.

    CAS  Google Scholar 

  134. Schwartz GJ, Tougas G, Moran TH. Integration of vagal afferent responses to duodenal loads and exogenous CCK in rats. Peptides. 1995;16(4):707–11.

    Article  CAS  PubMed  Google Scholar 

  135. Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science. 1981;213(4511):1036–7.

    Article  CAS  PubMed  Google Scholar 

  136. Akieda-Asai S, Poleni PE, Date Y. Coinjection of CCK and leptin reduces food intake via increased CART/TRH and reduced AMPK phosphorylation in the hypothalamus. Am J Physiol Endocrinol Metab. 2014;306(11):E1284–91.

    Article  CAS  PubMed  Google Scholar 

  137. Beinfeld MC, Palkovits M. Distribution of cholecystokinin (CCK) in the hypothalamus and limbic system of the rat. Neuropeptides. 1981;2(2):123–9.

    Article  CAS  Google Scholar 

  138. Savage AP, Adrian TE, Carolan G, Chatterjee VK, Bloom SR. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut. 1987;28(2):166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Abbott CR, Small CJ, Kennedy AR, Neary NM, Sajedi A, Ghatei MA, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res. 2005;1043(1–2):139–44.

    Article  CAS  PubMed  Google Scholar 

  140. Teubner BJ, Bartness TJ. PYY(3-36) into the arcuate nucleus inhibits food deprivation-induced increases in food hoarding and intake. Peptides. 2013;47:20–8.

    Article  CAS  PubMed  Google Scholar 

  141. Nonaka N, Shioda S, Niehoff ML, Banks WA. Characterization of blood-brain barrier permeability to PYY3-36 in the mouse. J Pharmacol Exp Ther. 2003;306(3):948–53.

    Article  CAS  PubMed  Google Scholar 

  142. Blevins JE, Chelikani PK, Haver AC, Reidelberger RD. PYY(3-36) induces Fos in the arcuate nucleus and in both catecholaminergic and non-catecholaminergic neurons in the nucleus tractus solitarius of rats. Peptides. 2008;29(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  143. Batterham RL, ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007;450(7166):106–9.

    Article  CAS  PubMed  Google Scholar 

  144. Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005;146(5):2369–75.

    Article  CAS  PubMed  Google Scholar 

  145. Halatchev IG, Cone RD. Peripheral administration of PYY(3-36) produces conditioned taste aversion in mice. Cell Metab. 2005;1(3):159–68.

    Article  CAS  PubMed  Google Scholar 

  146. Yu S, Asa SL, Ezzat S. Fibroblast growth factor receptor 4 is a target for the zinc-finger transcription factor Ikaros in the pituitary. Mol Endocrinol. 2002;16(5):1069–78.

    Article  CAS  PubMed  Google Scholar 

  147. Miyake A, Itoh N. Rat fibroblast growth factor receptor-4 mRNA in the brain is preferentially expressed in cholinergic neurons in the medial habenular nucleus. Neurosci Lett. 1996;203(2):101–4.

    Article  CAS  PubMed  Google Scholar 

  148. Hsuchou H, Pan W, Kastin AJ. Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS. 2013;10(1):32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Marcelin G, Jo YH, Li X, Schwartz GJ, Zhang Y, Dun NJ, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab. 2014;3(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  150. Dostalova I, Kavalkova P, Haluzikova D, Lacinova Z, Mraz M, Papezova H, et al. Plasma concentrations of fibroblast growth factors 19 and 21 in patients with anorexia nervosa. J Clin Endocrinol Metab. 2008;93(9):3627–32.

    Article  CAS  PubMed  Google Scholar 

  151. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.

    Article  PubMed  Google Scholar 

  152. Poykko SM, Kellokoski E, Horkko S, Kauma H, Kesaniemi YA, Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes. 2003;52(10):2546–53.

    Article  PubMed  Google Scholar 

  153. Razzaghy-Azar M, Nourbakhsh M, Pourmoteabed A, Nourbakhsh M, Ilbeigi D, Khosravi M. An evaluation of Acylated ghrelin and Obestatin levels in childhood obesity and their association with insulin resistance, metabolic syndrome, and oxidative stress. J Clin Med. 2016;5(7):E61.

    Article  PubMed  Google Scholar 

  154. Nguo K, Walker KZ, Bonham MP, Huggins CE. Systematic review and meta-analysis of the effect of meal intake on postprandial appetite-related gastrointestinal hormones in obese children. Int J Obes (Lond). 2016;40(4):555–63.

    Article  CAS  Google Scholar 

  155. Haqq AM, Grambow SC, Muehlbauer M, Newgard CB, Svetkey LP, Carrel AL, Yanovski JA, Purnell JQ, Freemark M. Ghrelin concentrations in Prader-Willi syndrome (PWS) infants and children: changes during development. Clin Endocrinol. 2008;69(6):911–20.

    Article  CAS  Google Scholar 

  156. Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med. 2002;8(7):643–4.

    Article  CAS  PubMed  Google Scholar 

  157. Pacifico L, Poggiogalle E, Costantino F, Anania C, Ferraro F, Chiarelli F, et al. Acylated and nonacylated ghrelin levels and their associations with insulin resistance in obese and normal weight children with metabolic syndrome. Eur J Endocrinol. 2009;161(6):861–70.

    Article  CAS  PubMed  Google Scholar 

  158. Ikezaki A, Hosoda H, Ito K, Iwama S, Miura N, Matsuoka H, et al. Fasting plasma ghrelin levels are negatively correlated with insulin resistance and PAI-1, but not with leptin, in obese children and adolescents. Diabetes. 2002;51(12):3408–11.

    Article  CAS  PubMed  Google Scholar 

  159. Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg. 2009;19(3):357–62.

    Article  PubMed  Google Scholar 

  160. Fruhbeck G, Diez-Caballero A, Gil MJ, Montero I, Gomez-Ambrosi J, Salvador J, et al. The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes Surg. 2004;14(5):606–12.

    Article  PubMed  Google Scholar 

  161. Fruhbeck G, Rotellar F, Hernandez-Lizoain JL, Gil MJ, Gomez-Ambrosi J, Salvador J, et al. Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia. Obes Surg. 2004;14(9):1208–15.

    Article  PubMed  Google Scholar 

  162. de Hollanda A, Casals G, Delgado S, Jimenez A, Viaplana J, Lacy AM, et al. Gastrointestinal hormones and weight loss maintenance following roux-en-Y gastric bypass. J Clin Endocrinol Metab. 2015;100(12):4677–84.

    Article  PubMed  CAS  Google Scholar 

  163. Hussein MS, Abushady MM, Refaat S, Ibrahim R. Plasma level of glucagon-like peptide 1 in obese Egyptians with normal and impaired glucose tolerance. Arch Med Res. 2014;45(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  164. Faerch K, Torekov SS, Vistisen D, Johansen NB, Witte DR, Jonsson A, et al. GLP-1 response to oral glucose is reduced in Prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO study. Diabetes. 2015;64(7):2513–25.

    Article  CAS  PubMed  Google Scholar 

  165. Manell H, Staaf J, Manukyan L, Kristinsson H, Cen J, Stenlid R, et al. Altered plasma levels of glucagon, GLP-1 and Glicentin during OGTT in adolescents with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2016;101(3):1181–9.

    Article  CAS  PubMed  Google Scholar 

  166. Anandhakrishnan A, Korbonits M. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J Diabetes. 2016;7(20):572–98.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Aulinger BA, Vahl TP, Wilson-Perez HE, Prigeon RL, D'Alessio DA. Beta-cell sensitivity to GLP-1 in healthy humans is variable and proportional to insulin sensitivity. J Clin Endocrinol Metab. 2015;100(6):2489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Adam TC, Jocken J, Westerterp-Plantenga MS. Decreased glucagon-like peptide 1 release after weight loss in overweight/obese subjects. Obes Res. 2005;13(4):710–6.

    Article  CAS  PubMed  Google Scholar 

  169. Verdich C, Toubro S, Buemann B, Lysgard Madsen J, Juul Holst J, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety--effect of obesity and weight reduction. Int J Obes Relat Metab Disord. 2001;25(8):1206–14.

    Article  CAS  PubMed  Google Scholar 

  170. Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, Vilsboll T, et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. 2013;56(5):965–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22(5):740–8.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Jacobsen SH, Olesen SC, Dirksen C, Jorgensen NB, Bojsen-Moller KN, Kielgast U, et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. 2012;22(7):1084–96.

    Article  CAS  PubMed  Google Scholar 

  173. Rhee NA, Wahlgren CD, Pedersen J, Mortensen B, Langholz E, Wandall EP, et al. Effect of Roux-en-Y gastric bypass on the distribution and hormone expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes. Diabetologia. 2015;58(10):2254–8.

    Article  CAS  PubMed  Google Scholar 

  174. Baranowska B, Radzikowska M, Wasilewska-Dziubinska E, Roguski K, Borowiec M. Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity. Diabetes Obes Metab. 2000;2(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  175. Milewicz A, Bidzinska B, Mikulski E, Demissie M, Tworowska U. Influence of obesity and menopausal status on serum leptin, cholecystokinin, galanin and neuropeptide Y levels. Gynecol Endocrinol. 2000;14(3):196–203.

    Article  CAS  PubMed  Google Scholar 

  176. French SJ, Murray B, Rumsey RD, Sepple CP, Read NW. Preliminary studies on the gastrointestinal responses to fatty meals in obese people. Int J Obes Relat Metab Disord. 1993;17(5):295–300.

    CAS  PubMed  Google Scholar 

  177. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365(17):1597–604.

    Article  CAS  PubMed  Google Scholar 

  178. Chearskul S, Delbridge E, Shulkes A, Proietto J, Kriketos A. Effect of weight loss and ketosis on postprandial cholecystokinin and free fatty acid concentrations. Am J Clin Nutr. 2008;87(5):1238–46.

    CAS  PubMed  Google Scholar 

  179. Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240(2):236–42.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Gueugnon C, Mougin F, Nguyen NU, Bouhaddi M, Nicolet-Guenat M, Dumoulin G. Ghrelin and PYY levels in adolescents with severe obesity: effects of weight loss induced by long-term exercise training and modified food habits. Eur J Appl Physiol. 2012;112(5):1797–805.

    Article  CAS  PubMed  Google Scholar 

  181. Fernandez-Garcia JC, Murri M, Coin-Araguez L, Alcaide J, El Bekay R, Tinahones FJ. GLP-1 and peptide YY secretory response after fat load is impaired by insulin resistance, impaired fasting glucose and type 2 diabetes in morbidly obese subjects. Clin Endocrinol. 2014;80(5):671–6.

    Article  CAS  Google Scholar 

  182. English PJ, Ashcroft A, Patterson M, Dovey TM, Halford JC, Harrison J, et al. Fasting plasma peptide-YY concentrations are elevated but do not rise postprandially in type 2 diabetes. Diabetologia. 2006;49(9):2219–21.

    Article  CAS  PubMed  Google Scholar 

  183. Ramracheya RD, McCulloch LJ, Clark A, Wiggins D, Johannessen H, Olsen MK, et al. PYY-dependent restoration of impaired insulin and glucagon secretion in type 2 diabetes following Roux-En-Y gastric bypass surgery. Cell Rep. 2016;15(5):944–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mraz M, Lacinova Z, Kavalkova P, Haluzikova D, Trachta P, Drapalova J, et al. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-alpha agonist treatment. Physiol Res. 2011;60(4):627–36.

    CAS  PubMed  Google Scholar 

  185. Gomez-Ambrosi J, Gallego-Escuredo JM, Catalan V, Rodriguez A, Domingo P, Moncada R, et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr. 2017;36(3):861–8.

    Article  CAS  PubMed  Google Scholar 

  186. Gallego-Escuredo JM, Gomez-Ambrosi J, Catalan V, Domingo P, Giralt M, Fruhbeck G, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes. 2015;39(1):121–9.

    Article  CAS  Google Scholar 

  187. Sachdev S, Wang Q, Billington C, Connett J, Ahmed L, Inabnet W, et al. FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical Management in Patients with type 2 diabetes. Obes Surg. 2016;26(5):957–65.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Roesch SL, Styer AM, Wood GC, Kosak Z, Seiler J, Benotti P, et al. Perturbations of fibroblast growth factors 19 and 21 in type 2 diabetes. PLoS One. 2015;10(2):e0116928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50. discussion 50-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7.

    Article  CAS  Google Scholar 

  192. Mazidi M, de Caravatto PP, Speakman JR, Cohen RV. Mechanisms of action of surgical interventions on weight-related diseases: the potential role of bile acids. Obes Surg. 2017;27(3):826–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Page MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Page, L.C., Miller, M.D., D’Alessio, D., Tong, J. (2018). Gastrointestinal Hormones and the Control of Food Intake and Energy Metabolism. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics