Skip to main content

Pathogenesis of Insulin Resistance and Glucose Intolerance in Childhood Obesity

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Obesity during childhood is a key driver of the development of insulin resistance. This is mainly due to two mechanisms—lipid partitioning patterns favoring greater deposition of fat in the intra-abdominal compartment and within insulin-responsive tissues (such as the skeletal muscle and liver) and fat tissue-derived cytokine secretion which affects whole-body metabolism. Both cause impairment of insulin signal transduction pathways manifesting as whole-body insulin resistance, necessitating a compensatory beta cell response in order to maintain euglycemia. This resistance results in increased fasting hepatic glucose production, reduced postprandial muscle glucose uptake, and enhanced adipose tissue lipolysis. Failure to develop such beta cell response over time results in prediabetic conditions (such as impaired fasting glucose and impaired glucose tolerance) and may advance to overt type 2 diabetes.

This is a preview of subscription content, log in via an institution.

References

  1. James PT, et al. The worldwide obesity epidemic. Obes Res. 2001;9(S11):228S–33S.

    Article  PubMed  Google Scholar 

  2. Ogden CL, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315(21):2292–9.

    Article  CAS  PubMed  Google Scholar 

  3. Weiss R, Caprio S. The metabolic consequences of childhood obesity. Best Pract Res Clin Endocrinol Metab. 2005;19(3):405–19.

    Article  CAS  PubMed  Google Scholar 

  4. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;75(3):473–86.

    Article  CAS  PubMed  Google Scholar 

  5. Salazar MR, et al. Relation among the plasma triglyceride/high-density lipoprotein cholesterol concentration ratio, insulin resistance, and associated cardio-metabolic risk factors in men and women. Am J Cardiol. 2012;109(12):1749–53.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang G, Garmey JC, Veldhuis JD. Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17alpha-hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells. Endocrinology. 2000;141(8):2735–42.

    Article  CAS  PubMed  Google Scholar 

  7. Brown AE, Walker M. Genetics of insulin resistance and the metabolic syndrome. Curr Cardiol Rep. 2016;18(8):75.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Beltrand J, Lévy-Marchal C. Pathophysiology of insulin resistance in subjects born small for gestational age. Best Pract Res Clin Endocrinol Metab. 2008;22(3):503–15.

    Article  CAS  PubMed  Google Scholar 

  9. Goran MI, Gower BA. Longitudinal study on pubertal insulin resistance. Diabetes. 2001;50(11):2444–50.

    Article  CAS  PubMed  Google Scholar 

  10. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol (1985). 2005;99(1):330–7.

    Article  CAS  Google Scholar 

  11. Weiss R. Fat distribution and storage: how much, where, and how? Eur J Endocrinol. 2007;157(Suppl 1):S39–45.

    Article  CAS  PubMed  Google Scholar 

  12. Dam V, Sikder T, Santosa S. From neutrophils to macrophages: differences in regional adipose tissue depots. Obes Rev. 2016;17(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  13. Harman-Boehm I, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007;92(6):2240–7.

    Article  CAS  PubMed  Google Scholar 

  14. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Golan R, et al. Abdominal superficial subcutaneous fat: a putative distinct protective fat subdepot in type 2 diabetes. Diabetes Care. 2012;35(3):640–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weiss R, et al. The “obese insulin-sensitive” adolescent: importance of adiponectin and lipid partitioning. J Clin Endocrinol Metab. 2005;90(6):3731–7.

    Article  CAS  PubMed  Google Scholar 

  17. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perry RJ, et al. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510(7503):84–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375(9733):2267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circ Res. 2005;96(10):1042–52.

    Article  CAS  PubMed  Google Scholar 

  22. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007;87(2):507–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab. 2003;14(9):398–403.

    Article  CAS  PubMed  Google Scholar 

  24. Koutsari C, Jensen MD. Thematic review series: patient-oriented research. Free fatty acid metabolism in human obesity. J Lipid Res. 2006;47(8):1643–50.

    Article  CAS  PubMed  Google Scholar 

  25. Petersen KF, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yeckel CW, et al. Validation of insulin sensitivity indices from oral glucose tolerance test parameters in obese children and adolescents. J Clin Endocrinol Metab. 2004;89(3):1096–101.

    Article  CAS  PubMed  Google Scholar 

  27. Taksali SE, et al. High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes. 2008;57(2):367–71.

    Article  CAS  PubMed  Google Scholar 

  28. Weiss R, et al. The triglyceride to high-density lipoprotein-cholesterol ratio in adolescence and subsequent weight gain predict nuclear magnetic resonance-measured lipoprotein subclasses in adulthood. J Pediatr. 2011;158(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  29. Weiss R, et al. Short-term dynamics and metabolic impact of abdominal fat depots after bariatric surgery. Diabetes Care. 2009;32(10):1910–5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Della Corte C, et al. Nonalcoholic fatty pancreas disease and nonalcoholic fatty liver disease: more than ectopic fat. Clin Endocrinol. 2015;83(5):656–62.

    Article  CAS  Google Scholar 

  31. Manco M, et al. Epicardial fat, abdominal adiposity and insulin resistance in obese pre-pubertal and early pubertal children. Atherosclerosis. 2013;226(2):490–5.

    Article  CAS  PubMed  Google Scholar 

  32. Prato D, Marchetti SP, Bonadonna RC. Phasic insulin release and metabolic regulation in type 2 diabetes. Diabetes. 2002;51(Suppl. 1):S109–16.

    Article  PubMed  Google Scholar 

  33. Cali’ AM, et al. Metabolic abnormalities underlying the different prediabetic phenotypes in obese adolescents. J Clin Endocrinol Metab. 2008;93(5):1767–73.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weiss R, et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet. 2003;362(9388):951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mitrakou A. Kidney: its impact on glucose homeostasis and hormonal regulation. Diabetes Res Clin Pract. 2011;93(Suppl 1):S66–72.

    Article  CAS  PubMed  Google Scholar 

  36. Meyer C, et al. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care. 2006;29(8):1909–14.

    Article  CAS  PubMed  Google Scholar 

  37. Weiss R, et al. Ethnic differences in beta cell adaptation to insulin resistance in obese children and adolescents. Diabetologia. 2006;49(3):571–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sinha R, Dufour S, Petersen KF, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002;51(4):1022–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kahn SE, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42(11):1663–72.

    Article  CAS  PubMed  Google Scholar 

  40. Utzschneider KM, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32(2):335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giannini C, et al. Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes. 2012;61(3):606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiss R, et al. Degree of obesity and glucose allostasis are major effectors of glucose tolerance dynamics in obese youth. Diabetes Care. 2007;30(7):1845–50.

    Article  CAS  PubMed  Google Scholar 

  43. Holder T, et al. A low disposition index in adolescent offspring of mothers with gestational diabetes: a risk marker for the development of impaired glucose tolerance in youth. Diabetologia. 2014;57(11):2413–20.

    Article  CAS  PubMed  Google Scholar 

  44. Bergman RN, Finegood DT, Ader M. Assessment of insulin sensitivity in vivo. Endocr Rev. 1985;6(1):45–86.

    Article  CAS  PubMed  Google Scholar 

  45. Best JD, et al. Role of glucose effectiveness in the determination of glucose tolerance. Diabetes Care. 1996;19(9):1018–30.

    Article  CAS  PubMed  Google Scholar 

  46. Lorenzo C, et al. Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010;33(9):2098–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weiss R, et al. Glucose effectiveness in obese children: relation to degree of obesity and dysglycemia. Diabetes Care. 2015;38(4):689–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gerich JE, Charles MA, Grodsky GM. Regulation of pancreatic insulin and glucagon secretion. Annu Rev Physiol. 1976;38:353–88.

    Article  CAS  PubMed  Google Scholar 

  49. Ertl AC, et al. Effects of oral carbohydrate on autonomic nervous system counterregulatory responses during hyperinsulinemic hypoglycemia and euglycemia. Am J Physiol Endocrinol Metab. 2008;295(3):E618–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev. 2007;28(1):84–116.

    Article  CAS  PubMed  Google Scholar 

  51. Weiss R, et al. Basal alpha-cell up-regulation in obese insulin-resistant adolescents. J Clin Endocrinol Metab. 2011;96(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  52. Franklin I, et al. Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes. 2005;54(6):1808–15.

    Article  CAS  PubMed  Google Scholar 

  53. Xu E, et al. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab. 2006;3(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  54. Nauck MA. Unraveling the science of incretin biology. Eur J Intern Med. 2009;20(Suppl 2):S303–8.

    Article  CAS  PubMed  Google Scholar 

  55. Manell H, et al. Altered plasma levels of glucagon, GLP-1 and glicentin during OGTT in adolescents with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2016;101(3):1181–9.

    Article  CAS  PubMed  Google Scholar 

  56. Michaliszyn SF, et al. β-Cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes. 2014;63(11):3846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Velásquez-Mieyer PA, et al. Racial disparity in glucagon-like peptide 1 and inflammation markers among severely obese adolescents. Diabetes Care. 2008;31(4):770–5.

    Article  PubMed  Google Scholar 

  58. Heptulla RA, et al. Augmentation of alimentary insulin secretion despite similar gastric inhibitory peptide (GIP) responses in juvenile obesity. Pediatr Res. 2000;47(5):628–33.

    Article  CAS  PubMed  Google Scholar 

  59. Pannacciulli N, et al. Higher fasting plasma concentrations of glucagon-like peptide 1 are associated with higher resting energy expenditure and fat oxidation rates in humans. Am J Clin Nutr. 2006;84(3):556–60.

    CAS  PubMed  Google Scholar 

  60. Kelly AS, et al. The effect of glucagon-like peptide-1 receptor agonist therapy on body mass index in adolescents with severe obesity: a randomized, placebo-controlled, clinical trial. JAMA Pediatr. 2013;167(4):355–60.

    Article  PubMed  PubMed Central  Google Scholar 

  61. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34:S62–9.

    Article  PubMed Central  Google Scholar 

  62. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva: World Health Organization; 2006.

    Google Scholar 

  63. Baranowski T, et al. Presence of diabetes risk factors in a large U.S. eighth-grade cohort. Diabetes Care. 2006;29(2):212–7.

    Article  CAS  PubMed  Google Scholar 

  64. Valerio G, et al. Insulin resistance and impaired glucose tolerance in obese children and adolescents from Southern Italy. Nutr Metab Cardiovasc Dis. 2006;16(4):279–84.

    Article  CAS  PubMed  Google Scholar 

  65. Yamamoto-Kimura L, et al. Prevalence and interrelations of cardiovascular risk factors in urban and rural Mexican adolescents. J Adolesc Health. 2006;38(5):591–8.

    Article  PubMed  Google Scholar 

  66. van Vliet M, et al. Differential impact of impaired fasting glucose versus impaired glucose tolerance on cardiometabolic risk factors in multi-ethnic overweight/obese children. Eur J Pediatr. 2011;170(5):589–97.

    Article  PubMed  Google Scholar 

  67. Duncan GE. Prevalence of diabetes and impaired fasting glucose levels among US adolescents: National Health and Nutrition Examination Survey, 1999–2002. Arch Pediatr Adolesc Med. 2006;160(5):523–8.

    Article  PubMed  Google Scholar 

  68. Brufani C, et al. Glucose tolerance status in 510 children and adolescents attending an obesity clinic in Central Italy. Pediatr Diabetes. 2010;11(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  69. Hagman E, et al. Impaired fasting glucose prevalence in two nationwide cohorts of obese children and adolescents. Int J Obes. 2014;38(1):40–5.

    Article  CAS  Google Scholar 

  70. Williams DE, et al. Prevalence of impaired fasting glucose and its relationship with cardiovascular disease risk factors in US adolescents, 1999–2000. Pediatrics. 2005;116(5):1122–6.

    Article  PubMed  Google Scholar 

  71. Narayanappa D, et al. Prevalence of prediabetes in school-going children. Indian Pediatr. 2011;48(4):295–9.

    Article  CAS  PubMed  Google Scholar 

  72. Yan WL, et al. Overweight, high blood pressure and impaired fasting glucose in Uyghur, Han, and Kazakh Chinese children and adolescents. Ethn Health. 2015;20(4):365–75.

    Article  CAS  PubMed  Google Scholar 

  73. Chen CM, Lou MF, Gau BS. Prevalence of impaired fasting glucose and analysis of related factors in Taiwanese adolescents. Pediatr Diabetes. 2014;15(3):220–8.

    Article  PubMed  Google Scholar 

  74. Al Amiri E, et al. The prevalence, risk factors, and screening measure for prediabetes and diabetes among Emirati overweight/obese children and adolescents. BMC Public Health. 2015;15:1298.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hagman E, et al. Association between impaired fasting glycaemia in pediatric obesity and type 2 diabetes in young adulthood. Nutr Diabetes. 2016;6(8):e227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weiss R, et al. Predictors of changes in glucose tolerance status in obese youth. Diabetes Care. 2005;28(4):902–9.

    Article  PubMed  Google Scholar 

  77. Gerstein HC, et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract. 2007;78(3):305–12.

    Article  PubMed  Google Scholar 

  78. Dabelea D, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Juonala M, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365(20):1876–85.

    Article  CAS  PubMed  Google Scholar 

  80. Lobstein T, Jackson-Leach R. Planning for the worst: estimates of obesity and comorbidities in school-age children in 2025. Pediatr Obes. 2016;11(5):321–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Weiss MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Weiss, R., Hagman, E. (2018). Pathogenesis of Insulin Resistance and Glucose Intolerance in Childhood Obesity. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_23

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics