Skip to main content

Distribution Based EEG Baseline Classification

  • Conference paper
  • First Online:
Computer Vision, Graphics, and Image Processing (ICVGIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10481))

Abstract

Electrical signals generated in the brain, known as Electroencephalographic (EEG) signals, form a non-invasive measure of brain functioning. Baseline states of EEG are Eyes Open (EO) and Eyes Closed (EC) relaxed states. The choice of baseline used in an experiment is of critical importance since they form a reference with which other states are measured. In Brain Machine Interface, it is imperative that the system should be able to distinguish between these states and hence the need for automated classification of EEG baselines. In the proposed method, Statistical Moments are utilized. The Moment Generating Functions (MGFs) obtained using these moments are given as features to SVM and k-NN classifiers resulting in mean accuracies of 86.71% and 86.54%. The fact that MGF is able to differentiate between these states indicate that the two states have different source distribution parameters. A Smirnov test verified that the data of two classes indeed come from different distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya, U.R., Sree, S.V., Chattopadhyay, S., Suri, J.S.: Automated diagnosis of normal and alcoholic EEG signals. Int. J. Neural Syst. 22(03), 1250011 (2012)

    Article  Google Scholar 

  2. Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2), 205–211 (2007)

    Article  Google Scholar 

  3. Barry, R.J., Clarke, A.R., Johnstone, S.J., Magee, C.A., Rushby, J.A.: EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 118(12), 2765–2773 (2007)

    Article  Google Scholar 

  4. Bell, M.A., Fox, N.A.: Individual differences in object permanence performance at 8 months: locomotor experience and brain electrical activity. Dev. Psychobiol. 31(4), 287–297 (1997)

    Article  Google Scholar 

  5. Berger, V.W., Zhou, Y.: Kolmogorov-Smirnov test: Overview. Wiley StatsRef: Statistics Reference Online (2005)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Ebrahimi, F., Mikaeili, M., Estrada, E., Nazeran, H.: Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1151–1154. IEEE (2008)

    Google Scholar 

  8. Estrada, E., Nazeran, H., Nava, P., Behbehani, K., Burk, J., Lucas, E.: EEG feature extraction for classification of sleep stages. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2004, IEMBS 2004, vol. 1, pp. 196–199. IEEE (2004)

    Google Scholar 

  9. Fleck, J.I., Green, D.L., Stevenson, J.L., Payne, L., Bowden, E.M., Jung-Beeman, M., Kounios, J.: The transliminal brain at rest: baseline EEG, unusual experiences, and access to unconscious mental activity. Cortex 44(10), 1353–1363 (2008)

    Article  Google Scholar 

  10. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  11. Janzen, T., Graap, K., Stephanson, S., Marshall, W., Fitzsimmons, G.: Differences in baseline EEG measures for add and normally achieving preadolescent males. Biofeedback Self Regul. 20(1), 65–82 (1995)

    Article  Google Scholar 

  12. Larose, D.T.: K-nearest neighbor algorithm. Discovering Knowledge in Data: An Introduction to Data Mining, pp. 90–106 (2005)

    Google Scholar 

  13. Li, L., Xiao, L., Chen, L.: Differences of EEG between eyes-open and eyes-closed states based on autoregressive method. J. Electron. Sci. Technol. China 7(2), 175–179 (2009)

    Google Scholar 

  14. Miller, S., Childers, D.: Probability and Random Processes: with Applications to Signal Processing and Communications. Academic Press, Cambridge (2012)

    MATH  Google Scholar 

  15. Murugappan, M., Ramachandran, N., Sazali, Y., et al.: Classification of human emotion from EEG using discrete wavelet transform. J. Biomed. Sci. Eng. 3(04), 390 (2010)

    Article  Google Scholar 

  16. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  17. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)

    Article  Google Scholar 

  18. Tan, B., Kong, X., Yang, P., Jin, Z., Li, L.: The difference of brain functional connectivity between eyes-closed and eyes-open using graph theoretical analysis. Computational and mathematical methods in medicine 2013 (2013)

    Google Scholar 

  19. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf Technol. Biomed. 13(5), 703–710 (2009)

    Article  Google Scholar 

  20. Valenzi, S., Islam, T., Jurica, P., Cichocki, A.: Individual classification of emotions using EEG. J. Biomed. Sci. Eng. 7(8), 604 (2014)

    Article  Google Scholar 

  21. Vijayan, A.E., Sen, D., Sudheer, A.: EEG-based emotion recognition using statistical measures and auto-regressive modeling. In: 2015 IEEE International Conference on Computational Intelligence and Communication Technology (CICT), pp. 587–591. IEEE (2015)

    Google Scholar 

  22. Zhu, G., Li, Y., Wen, P.P., Wang, S.: Analysis of alcoholic EEG signals based on horizontal visibility graph entropy. Brain Inf. 1(1–4), 19–25 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopika Gopan K. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gopan K., G., Sinha, N., Babu J., D. (2017). Distribution Based EEG Baseline Classification. In: Mukherjee, S., et al. Computer Vision, Graphics, and Image Processing. ICVGIP 2016. Lecture Notes in Computer Science(), vol 10481. Springer, Cham. https://doi.org/10.1007/978-3-319-68124-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68124-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68123-8

  • Online ISBN: 978-3-319-68124-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics