Skip to main content

Endogenous Radionanomedicine: Biodistribution and Imaging

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

In vivo distribution of extracellular vesicles (EVs) are important in clinical application. Recently, tracking methods have been developed to monitor EVs in vivo. It ranged from fluorescence imaging to clinically available radionuclide imaging or magnetic resonance imaging. Each method has pros and cons in terms of capability of quantification, penetration depth, availability and clinical translatability. We introduce currently available labeling methods for imaging and their advantages and disadvantages. These imaging methods have elucidated the in vivo biodistribution of EVs. However, technical factors such as isolation, labeling methods and administration methods as well as biological factors including cell sources have resulted in variability of biodistribution patterns. We also review biodistribution results of EVs and what impacts on biodistribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.V. Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820(7), 940–948 (2012)

    Article  Google Scholar 

  2. Y. Lee, S. El Andaloussi, M.J. Wood, Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 21(R1), R125–R134 (2012)

    Article  Google Scholar 

  3. Y. Sun, J. Liu, Potential of cancer cell-derived exosomes in clinical application: a review of recent research advances. Clin. Ther. 36(6), 863–872 (2014)

    Article  Google Scholar 

  4. D. Sun, X. Zhuang, S. Zhang, Z.-B. Deng, W. Grizzle, D. Miller et al., Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv. Drug Deliv. Rev. 65(3), 342–347 (2013)

    Article  Google Scholar 

  5. M. Colombo, G. Raposo, C. Thery, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014)

    Article  Google Scholar 

  6. A.K.A. Silva, R. Di Corato, T. Pellegrino, S. Chat, G. Pugliese, N. Luciani et al., Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale 5(23), 11374–11384 (2013)

    Article  ADS  Google Scholar 

  7. A.K. Silva, N. Luciani, F. Gazeau, K. Aubertin, S. Bonneau, C. Chauvierre et al., Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomedicine 11(3), 645–655 (2015)

    Article  Google Scholar 

  8. A.K. Silva, J. Kolosnjaj-Tabi, S. Bonneau, I. Marangon, N. Boggetto, K. Aubertin et al., Magnetic and photoresponsive theranosomes: translating cell-released vesicles into smart nanovectors for cancer therapy. ACS Nano. 7(6), 4954–4966 (2013)

    Article  Google Scholar 

  9. C.P. Lai, O. Mardini, M. Ericsson, S. Prabhakar, C.A. Maguire, J.W. Chen et al., Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano. 8(1), 483–494 (2014)

    Article  Google Scholar 

  10. Y. Takahashi, M. Nishikawa, H. Shinotsuka, Y. Matsui, S. Ohara, T. Imai et al., Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J. Biotechnol. 165(2), 77–84 (2013)

    Article  Google Scholar 

  11. J.L. Hood, R.S. San, S.A. Wickline, Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71(11), 3792–3801 (2011)

    Article  Google Scholar 

  12. S. Ohno, M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa, N. Matsuyama et al., Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21(1), 185–191 (2013)

    Article  Google Scholar 

  13. T. Tian, Y.L. Zhu, F.H. Hu, Y.Y. Wang, N.P. Huang, Z.D. Xiao, Dynamics of exosome internalization and trafficking. J. Cell. Physiol. 228(7), 1487–1495 (2013)

    Article  Google Scholar 

  14. T. Smyth, M. Kullberg, N. Malik, P. Smith-Jones, M.W. Graner, T.J. Anchordoquy, Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J. Control Release. 199, 145–155 (2015)

    Article  Google Scholar 

  15. T. Tian, Y. Wang, H. Wang, Z. Zhu, Z. Xiao, Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell. Biochem. 111(2), 488–496 (2010)

    Article  Google Scholar 

  16. K. Laulagnier, H. Vincent-Schneider, S. Hamdi, C. Subra, D. Lankar, M. Record, Characterization of exosome subpopulations from RBL-2H3 cells using fluorescent lipids. Blood Cells Mol. Dis. 35(2), 116–121 (2005)

    Article  Google Scholar 

  17. D. Sun, X. Zhuang, X. Xiang, Y. Liu, S. Zhang, C. Liu et al., A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 18(9), 1606–1614 (2010)

    Article  Google Scholar 

  18. C. Grange, M. Tapparo, S. Bruno, D. Chatterjee, P.J. Quesenberry, C. Tetta et al., Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int. J. Mol. Med. 33(5), 1055–1063 (2014)

    Article  Google Scholar 

  19. M. Mittelbrunn, C. Gutierrez-Vazquez, C. Villarroya-Beltri, S. Gonzalez, F. Sanchez-Cabo, M.A. Gonzalez et al., Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011)

    Article  Google Scholar 

  20. A. Suetsugu, K. Honma, S. Saji, H. Moriwaki, T. Ochiya, R.M. Hoffman, Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv. Drug Deliv. Rev. 65(3), 383–390 (2013)

    Article  Google Scholar 

  21. C.P.-K. Lai, X.O. Breakefield, Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 3, 228–242 (2012)

    Article  Google Scholar 

  22. C.P. Lai, E.Y. Kim, C.E. Badr, R. Weissleder, T.R. Mempel, B.A. Tannous et al., Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015)

    Article  Google Scholar 

  23. M. Morishita, Y. Takahashi, M. Nishikawa, K. Sano, K. Kato, T. Yamashita et al., Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J. Pharm. Sci. 104(2), 705–713 (2015)

    Article  Google Scholar 

  24. H. Choi, S.C. Jang, M.Y. Yoo, J.Y. Park, N.E. Choi, H.J. Oh et al., Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 99mTc-HMPAO. Sci. Rep. 5, 15636 (2015)

    Article  ADS  Google Scholar 

  25. Z. Varga, I. Gyurkó, K. Pálóczi, E.I. Buzás, I. Horváth, N. Hegedűs et al., Radiolabeling of extracellular vesicles with 99mTc for quantitative in vivo imaging studies. Cancer Biother. Radiopharm. 31(5), 168–173 (2016)

    Article  Google Scholar 

  26. L. Hu, S.A. Wickline, J.L. Hood, Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn. Reson. Med. 74(1), 266–271 (2015)

    Article  Google Scholar 

  27. A. Busato, R. Bonafede, P. Bontempi, I. Scambi, L. Schiaffino, D. Benati et al., Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: a new method to obtain labeled exosomes. Int. J. Nanomedicine 11, 2481 (2016)

    Google Scholar 

  28. S.A. Kooijmans, S. Stremersch, K. Braeckmans, S.C. de Smedt, A. Hendrix, M.J. Wood et al., Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control Release. 172(1), 229–238 (2013)

    Article  Google Scholar 

  29. R.C. Lai, T.S. Chen, S.K. Lim, Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen. Med. 6(4), 481–492 (2011)

    Article  Google Scholar 

  30. L. Timmers, S.K. Lim, I.E. Hoefer, F. Arslan, R.C. Lai, A.A. van Oorschot et al., Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 6(3), 206–214 (2011)

    Article  Google Scholar 

  31. S. Gatti, S. Bruno, M.C. Deregibus, A. Sordi, V. Cantaluppi, C. Tetta et al., Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 26(5), 1474–1483 (2011)

    Article  Google Scholar 

  32. S. Bian, L. Zhang, L. Duan, X. Wang, Y. Min, H. Yu, Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J. Mol. Med. Berl. 92(4), 387–397 (2014)

    Article  Google Scholar 

  33. L. Kilpinen, U. Impola, L. Sankkila, I. Ritamo, M. Aatonen, S. Kilpinen et al., Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J. Extracell. Vesicles 2(1), 21927 (2013)

    Article  Google Scholar 

  34. H. Peinado, M. Alečković, S. Lavotshkin, I. Matei, B. Costa-Silva, G. Moreno-Bueno et al., Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18(6), 883–891 (2012)

    Article  Google Scholar 

  35. O.P. Wiklander, J.Z. Nordin, A. O’Loughlin, Y. Gustafsson, G. Corso, I. Mäger et al., Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 4(1), 26316 (2015)

    Article  Google Scholar 

  36. K.W. Witwer, E.I. Buzas, L.T. Bemis, A. Bora, C. Lässer, J. Lötvall et al., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2(1), 20360 (2013)

    Article  Google Scholar 

  37. A.N. Böing, E. Van Der Pol, A.E. Grootemaat, F.A. Coumans, A. Sturk, R. Nieuwland, Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 3(1), 23430 (2014)

    Article  Google Scholar 

  38. J.Z. Nordin, Y. Lee, P. Vader, I. Mäger, H.J. Johansson, W. Heusermann et al., Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11(4), 879–883 (2015)

    Article  Google Scholar 

  39. R. Linares, S. Tan, C. Gounou, N. Arraud, A.R. Brisson, High-speed centrifugation induces aggregation of extracellular vesicles. J. Extracell. Vesicles 4(1), 29509 (2015)

    Article  Google Scholar 

  40. R. van der Meel, M.H. Fens, P. Vader, W.W. van Solinge, O. Eniola-Adefeso, R.M. Schiffelers, Extracellular vesicles as drug delivery systems: lessons from the liposome field. J. Control Release. 195, 72–85 (2014)

    Article  Google Scholar 

  41. T.A. Shtam, R.A. Kovalev, E.Y. Varfolomeeva, E.M. Makarov, Y.V. Kil, M.V. Filatov, Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun. Signal. 11(1), 88 (2013)

    Article  Google Scholar 

  42. H. Choi, Y.-S. Lee, D.W. Hwang, D.S. Lee, Translational radionanomedicine: a clinical perspective. Eur. J. Nanomed. 8(2), 71–84 (2016)

    Article  Google Scholar 

  43. H. Choi, D.S. Lee, Illuminating the physiology of extracellular vesicles. Stem Cell Res. Ther. 7(1), 55 (2016)

    Article  Google Scholar 

  44. S.M. Moghimi, A.C. Hunter, J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)

    Google Scholar 

  45. S.-D. Li, L. Huang, Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5(4), 496–504 (2008)

    Article  Google Scholar 

  46. S. Reske, Recent advances in bone marrow scanning. Eur. J. Nucl. Med. Mol. Imaging 18(3), 203–221 (1991)

    Article  Google Scholar 

  47. H. Sarin, Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes Res. 2(1), 14 (2010)

    Article  Google Scholar 

  48. M.C. Garnett, P. Kallinteri, Nanomedicines and nanotoxicology: some physiological principles. Occup. Med. Lond. 56(5), 307–311 (2006)

    Article  Google Scholar 

  49. S.J. Gould, G. Raposo, As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2(1), 20389 (2013)

    Article  Google Scholar 

  50. S. El Andaloussi, I. Mäger, X.O. Breakefield, M.J. Wood, Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12(5), 347 (2013)

    Article  Google Scholar 

  51. S. Rana, S. Yue, D. Stadel, M. Zoller, Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44(9), 1574–1584 (2012)

    Article  Google Scholar 

  52. S. Rana, M. Zöller, Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem. Soc. Trans. 39(2), 559–562 (2011)

    Article  Google Scholar 

  53. L. Lattanzi, M. Federico, A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine 30(50), 7229–7237 (2012)

    Article  Google Scholar 

  54. R.C. Lai, S.S. Tan, R.W.Y. Yeo, A.B.H. Choo, A.T. Reiner, Y. Su et al., MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J. Extracell. Vesicles 5(1), 29828 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyoon Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, H., Lee, D.S. (2018). Endogenous Radionanomedicine: Biodistribution and Imaging. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_8

Download citation

Publish with us

Policies and ethics