Skip to main content

From Knights Corner to Landing: A Case Study Based on a Hodgkin-Huxley Neuron Simulator

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10524))

Included in the following conference series:

Abstract

Brain modeling has been presenting significant challenges to the world of high-performance computing (HPC) over the years. The field of computational neuroscience has been developing a demand for physiologically plausible neuron models, that feature increased complexity and thus, require greater computational power. We explore Intel’s newest generation of Xeon Phi computing platforms, named Knights Landing (KNL), as a way to match the need for processing power and as an upgrade over the previous generation of Xeon Phi models, the Knights Corner (KNC). Our neuron simulator of choice features a Hodgkin-Huxley-based (HH) model which has been ported on both generations of Xeon Phi platforms and aggressively draws on both platforms’ computational assets. The application uses the OpenMP interface for efficient parallelization and the Xeon Phi’s vectorization buffers for Single-Instruction Multiple Data (SIMD) processing. In this study we offer insight into the efficiency with which the application utilizes the assets of the two Xeon Phi generations and we evaluate the merits of utilizing the KNL over its predecessor. In our case, an out-of-the-box transition on Knights Landing, offers on average 2.4\(\times \) speed up while consuming 48% less energy than KNC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. CUDA C Programming Guide. Technical report, NVIDIA Corporation

    Google Scholar 

  2. Bhuiyan, M., Nallamuthu, A., Smith, M., Pallipuram, V.: Optimization and performance study of large-scale biological networks for reconfigurable computing. In: Fourth International Workshop on High-Performance Reconfigurable Computing Technology and Applications (HPRCTA), pp. 1–9, November 2010

    Google Scholar 

  3. Bhuiyan, M., et al.: Acceleration of spiking neural networks in emerging multi-core and GPU architectures. In: IPDPSW (2010)

    Google Scholar 

  4. Birrittella, M.S., Debbage, M., Huggahalli, R., Kunz, J., Lovett, T., Rimmer, T., Underwood, K.D., Zak, R.C.: Intel® omni-path architecture: enabling scalable, high performance fabrics. In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects (HOTI), pp. 1–9. IEEE (2015)

    Google Scholar 

  5. Chatzikonstantis, G., Rodopoulos, D., Nomikou, S., Strydis, C., De Zeeuw, C.I., Soudris, D.: First impressions from detailed brain model simulations on a Xeon/Xeon-Phi Node. In: Proceedings of the ACM International Conference on Computing Frontiers, CF 2016, NY, USA, pp. 361–364 (2016). doi:10.1145/2903150.2903477

  6. Chatzikonstantis, G., Rodopoulos, D., Strydis, C., De Zeeuw, C.I., Soudris, D.: Optimizing extended Hodgkin-Huxley neuron model simulations for a Xeon/Xeon Phi node. IEEE Trans. Parallel Distrib. Syst. (2017)

    Google Scholar 

  7. Dagum, L., Enon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE CSE 5(1), 46–55 (1998)

    Google Scholar 

  8. De Zeeuw, C.I., Hoebeek, F.E., Bosman, L.W., Schonewille, M., Witter, L., Koekkoek, S.K.: Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 12(6), 327–344 (2011)

    Article  Google Scholar 

  9. De Zeeuw, C.I., et al.: Microcircuitry and function of the inferior olive. Trends Neurosci. 21(9), 391–400 (1998)

    Article  Google Scholar 

  10. Fang, J., et al.: Test-driving Intel Xeon Phi. In: ICPE (2014)

    Google Scholar 

  11. Glackin, B., Wall, J.A., McGinnity, T.M., Maguire, L.P., McDaid, L.: A spiking neural network model of the medial superior olive using spike timing dependent plasticity for sound localization. Front. Comput. Neurosci. 4(18) (2010)

    Google Scholar 

  12. Goodman, D.F., Brette, R.: The brian simulator. Front. Neurosci. 3, 26 (2009)

    Article  Google Scholar 

  13. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9(6), 1245–1249 (1997)

    Article  Google Scholar 

  14. Hodgkin, A.L., Huxley, A.F.: Propagation of electrical signals along giant nerve fibres. Proc. R. Soc. Lond. Ser. B Biol. Sci. 140(899), 177–183 (1952)

    Article  Google Scholar 

  15. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-Performance Programming. Elsevier, Waltham (2013)

    Google Scholar 

  16. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition. Morgan Kaufmann, Boston (2016)

    Google Scholar 

  17. Kaufman, G.J., et al.: System and method for application programming interface for extended intelligent platform management. US Patent 7,966,389, 21 Jun 2011

    Google Scholar 

  18. Nguyen, H.D., Al-Ars, Z., Smaragdos, G., Strydis, C.: Accelerating complex brain-model simulations on GPU platforms. In: Design, Automation, and Test in Europe, DATE 2015, March 2015

    Google Scholar 

  19. Du Nguyen, H.A., et al.: Accelerating complex brain-model simulations on GPU platforms. In: DATE, pp. 974–979 (2015)

    Google Scholar 

  20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, vol. 2. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  21. Rosales, C., James, D., Gómez-Iglesias, A., Cazes, J., Huang, L., Liu, H., Liu, S., Barth, W.: TACC Technical Report TR-16-03 KNL Utilization Guidelines. Technical report, University of Texas at Austin, Texas Advanced Computing Center, November 2016. https://portal.tacc.utexas.edu/documents/10157/1334612/KNL+Utilization+Guidelines/95cc0f23-1755-424d-8d29-64a91a09cf33

  22. Smaragdos, G., Isaza, S., Eijk, M.V., Sourdis, I., Strydis, C.: FPGA-based biophysically-meaningful modeling of olivocerebellar neurons. In: 22nd ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), February 2014

    Google Scholar 

  23. Snir, M.: MPI-the Complete Reference: The MPI Core. MIT, Cambridge (1998)

    Google Scholar 

  24. Wallisch, P., Lusignan, M.E., Benayoun, M.D., Baker, T.I., Dickey, A.S., Hatsopoulos, N.G.: MATLAB for Neuroscientists: An Introduction to Scientific Computing in MATLAB. Academic Press, San Diego (2014)

    MATH  Google Scholar 

  25. Yamazaki, T., Igarashi, J.: Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Netw. 47, 103–111 (2013). http://www.sciencedirect.com/science/article/pii/S0893608013000348. Computation in the Cerebellum

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by European Commission project H2020–687628–VINEYARD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Chatzikonstantis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chatzikonstantis, G., Jiménez, D., Meneses, E., Strydis, C., Sidiropoulos, H., Soudris, D. (2017). From Knights Corner to Landing: A Case Study Based on a Hodgkin-Huxley Neuron Simulator. In: Kunkel, J., Yokota, R., Taufer, M., Shalf, J. (eds) High Performance Computing. ISC High Performance 2017. Lecture Notes in Computer Science(), vol 10524. Springer, Cham. https://doi.org/10.1007/978-3-319-67630-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67630-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67629-6

  • Online ISBN: 978-3-319-67630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics