Skip to main content

An IoT-Based Architecture to Develop a Healthcare Smart Platform

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2017)

Abstract

Nowadays, obesity and hypertension are two global health problems that affect the quality of life of people and thus their work life. The Internet of Things (IoT) is a paradigm in which everyday objects are equipped with identification, detection, interconnection, and processing capabilities that allow them to communicate with one another and with other devices and services through the Internet to achieve some goal. The IoT great opportunities for monitoring, analyzing, diagnosing, controlling and providing treatment recommendations for chronic-degenerative diseases, such as obesity and hypertension. In this work, we design a smart healthcare platform architecture based on the IoT paradigm; the paper also discusses important literature associating obesity, hypertension, and other chronic-degenerative diseases with the applications of the IoT paradigm. Finally, to validate our architecture, we present the case study of an elderly patient suffering from overweight and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Obesity and overweight (2017). http://www.who.int/mediacentre/factsheets/fs311/en/

  2. World Health Organization. WHO/ISH Hypertension guidelines (2017). http://www.who.int/cardiovascular_diseases/guidelines/hypertension/en/

  3. Li, L., Li, S., Zhao, S.: QoS-aware scheduling of services-oriented Internet of Things. IEEE Trans. Ind. Inf. 10, 1497–1505 (2014). doi:10.1109/TII.2014.2306782

    Article  Google Scholar 

  4. Xu, L.D., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inf. 10, 2233–2243 (2014). doi:10.1109/TII.2014.2300753

    Article  Google Scholar 

  5. Bhatt, Y., Bhatt, C.: Internet of Things in HealthCare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things and Big Data Technologies for Next Generation Healthcare. SBD, vol. 23, pp. 13–33. Springer, Cham (2017). doi:10.1007/978-3-319-49736-5_2

    Chapter  Google Scholar 

  6. Krawczyk, B., Woźniak, M.: Hypertension type classification using hierarchical ensemble of one-class classifiers for imbalanced data. In: Bogdanova, A.M., Gjorgjevikj, D. (eds.) ICT Innovations 2014. AISC, vol. 311, pp. 341–349. Springer, Cham (2015). doi:10.1007/978-3-319-09879-1_34

    Google Scholar 

  7. Vazquez-Briseno, M., Navarro-Cota, C., Nieto-Hipolito,J.I., Jimenez-Garcia, E., Sanchez-Lopez, J.D.: A proposal for using the Internet of Things concept to increase children’s health awareness. In: 2012 22nd International Conference on Electrical Communications and Computers (CONIELECOMP), pp. 168–172 (2012). doi:10.1109/CONIELECOMP.2012.6189903

  8. Vilollonga, R., Lecube, A., Fort, J.M., Boleko, M.A., Hidalgo, M., Armengol, M.: Internet of Things and bariatric surgery follow-up: comparative study of standard and IoT follow-up. Minim. Invasive Ther. Inf. Healthcare 22, 304–311 (2013). doi:10.3109/13645706.2013.779282

    Article  Google Scholar 

  9. Mun Lee, B., Ouyang, J.: Application protocol adapted to health awareness for smart healthcare service. Adv. Sci. Technol. Lett. 43, 101–104 (2013). doi:10.14257/astl.2013.43.21

    Google Scholar 

  10. Zaragozá, I., Guixeres, J., Alcañiz, M., Cebolla, A., Saiz, J., Álvarez, J.: Ubiquitous monitoring and assessment of childhood obesity. Pers. Ubiquit. Comput. 17, 1147–1157 (2013). doi:10.1007/s00779-012-0562-x

    Article  Google Scholar 

  11. Mun Lee, B., Ouyang, J.: Intelligent healthcare service by using collaborations between IoT personal health devices. Int. J. Bio-Science Bio-Technology 6, 155–164 (2014). doi:10.14257/ijbsbt.2014.6.1.17

    Google Scholar 

  12. Hiremath, S., Yang, G., Mankodiya, K.: Wearable Internet of Things: concept, architectural components and promises for person-centered healthcare. In: 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), pp. 304–307 (2014). doi:10.4108/icst.mobihealth.2014.257440

  13. Vazquez, M., Jimenez, E., Nieto, J.I., Sanchez, J.D.D., Garcia, A., Torres, J.P.: Development of a mobile health architecture to prevent childhood obesity. IEEE Lat. Am. Trans. 13, 1520–1527 (2015). doi:10.1109/TLA.2015.7112010

    Article  Google Scholar 

  14. Kim, K.K., Logan, H.C., Young, E., Sabee, C.M.: Youth-centered design and usage results of the iN Touch mobile self-management program for overweight/obesity. Pers. Ubiquit. Comput. 19, 59–68 (2015). doi:10.1007/s00779-014-0808-x

    Article  Google Scholar 

  15. Alloghani, M., Hussain, A., AI-Jumeily, D., Fergus, P., Abuelma’atti, O., Hamden, H.: A Mobile Health Monitoring Application for Obesity Management and Control Using the Intemet-of-Things, pp. 19–24. IEEE (2016). doi:10.1109/ICDIPC.2016.7470785

  16. Wibisono, G., Astawa, I.G.B.: Designing Machine-to-Machine (M2M) prototype system for weight loss program for obesity and overweight patients. In: 7th International Conference on Intelligent Systems, Modelling and Simulation, pp. 138–143 (2016). doi:10.1109/ISMS.2016.52

  17. Dobbins, C., Rawassizadeh, R., Momeni, E.: Detecting physical activity within lifelogs towards preventing obesity and aiding ambient assisted living. Neurocomputing 230, 1–23 (2016). doi:10.1016/j.neucom.2016.02.088

    Google Scholar 

  18. Shin, S.-A., Lee, N.-Y., Park, J.-H.: Empirical study of the IoT-learning for obese patients that require personal training. In: Park, J.J.(Jong Hyuk), Pan, Y., Yi, G., Loia, V. (eds.) Advances in Computer Science and Ubiquitous Computing. LNEE, vol. 421, pp. 1005–1012. Springer, Singapore (2017). doi:10.1007/978-981-10-3023-9_156

    Chapter  Google Scholar 

  19. Antonovici, D.A., Chiuachisan, I., Geman, O., Tomegea, A.: Acquisition and management of biomedical data using Internet of Things concepts. In: IEEE - 2014 International Symposium on Fundamentals of Electrical Engineering, pp. 1–4 (2014). doi:10.1109/ISFEE.2014.7050625

  20. Akutekwe, A., Seker, H.: A hybrid dynamic Bayesian network approach for modeling temporal associations of gene expressions for hypertension diagnosis. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 804–807 (2014). doi:10.1109/EMBC.2014.6943713

  21. Deen, M.J.: Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquit. Comput. 19, 573–599 (2015). doi:10.1007/s00779-015-0856-x

    Article  Google Scholar 

  22. Jeong, J.S., Han, O., You, Y.Y.: A design characteristics of smart healthcare system as the IoT application. Indian J. Sci. Technol. 9, 1–8 (2016). doi:10.17485/ijst/2016/v9i37/102547

    Google Scholar 

  23. Gupta, P.K., Maharaj, B.T., Malekian, R.: A novel and secure IoT based cloud centric architecture to perform predictive analysis of users activities in sustainable health centres. Multimedia Tools Appl. 76, 1–24 (2016). doi:10.1007/s11042-016-4050-6

    Google Scholar 

  24. Chen, M., Ma, Y., Song, J., Lai, C.F., Hu, B.: Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mob. Netw. Appl. 21, 825–845 (2016). doi:10.1007/s11036-016-0745-1

    Article  Google Scholar 

  25. Jung, H.: A conceptual framework for trajectory-based medical analytics with IoT contexts. J. Comput. Syst. Sci. 82, 610–626 (2016). doi:10.1016/j.jcss.2015.10.007

    Article  MathSciNet  Google Scholar 

  26. Lake, D., Milito, R., Morrow, M., Vargheese, R.: Internet of Things: architectural framework for eHealth security. J. ICT, 3 & 4, 301–328 (2014). doi:10.13052/jicts2245-800X.133

  27. Zhang, H., Song, H.: Ubiquitous WSN for healthcare: recent advances and future prospects. IEEE IoT J. 4, 311–318 (2014). doi:10.1109/JIOT.2014.2329462

    Google Scholar 

  28. Santos, J., Rodrigues, J.P.C., Silva, B., Casal, J., Saleem, K., Denisov, V.: An IoT-based mobile gateway for intelligent personal assistants on mobile health environments. J. Netw. Comput. Appl. 71, 194–204 (2016). doi:10.1016/j.jnca.2016.03.014

    Article  Google Scholar 

  29. Hossain, M.S., Muhammad, G.: Cloud-assisted industrial Internet of Things (IIoT) – enabled framework for health monitoring. Comput. Netw. 101, 192–202 (2016). doi:10.1016/j.comnet.2016.01.009

    Article  Google Scholar 

  30. Jara, A.J., Zamora, M.A., Skarmeta, A.F.G.: An Internet of Things–based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquit. Comput. 15, 431–440 (2011). doi:10.1007/s00779-010-0353-1

    Article  Google Scholar 

  31. Paschou, M., Sakkopoulos, E., Sourla, E., Tsakalidis, A.: Health Internet of Things: metrics and methods for efficient data transfer. Simul. Model. Pract. Theor. 34, 186–199 (2013). doi:10.1016/j.simpat.2012.08.002

    Article  Google Scholar 

  32. Gia, T.N., Thanigaivelan, N.K., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Customizing 6lowpan networks towards internet-of-things based ubiquitous healthcare systems. In: NORCHIP, pp. 1–6. IEEE (2014). doi:10.1109/NORCHIP.2014.7004716

  33. Jung, E.Y., Kim, J., Chung, K.Y., Park, D.K.: Mobile healthcare application with EMR interoperability for diabetes patients. Cluster Comput. 17, 871–880 (2013). doi:10.1007/s10586-013-0315-2

    Article  Google Scholar 

  34. Hu, L., Ong, D.M., Zhu, X., Liu, Q., Song, E.: Enabling RFID technology for healthcare: application, architecture, and challenges. Telecommun. Syst. 58, 259–271 (2015). doi:10.1007/s11235-014-9871-x

    Article  Google Scholar 

  35. Kumar, K.M.C.: Internet of fitness things – a move towards quantified health: concept, sensor-cloud network, protocols and a new methodology for OSA patients. In: 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 364–369 (2015). doi:10.1109/RAICS.2015.7488443

  36. Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Semantic interoperability in the Internet of Things: an overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 81, 1–23 (2016). doi:10.1016/j.jnca.2016.08.007

    Google Scholar 

  37. Raza, M., Hoa Le, M., Aslam, N., Hieu Le, C., Tam Le, N., Ly Le, T.: Telehealth Technology: Potentials, Challenges and Research Directions for Developing Countries. IFMBE Proceedings, pp. 233–236. Springer (2016)

    Google Scholar 

  38. Camara-Brito, J.M.: Trends in wireless communications towards 5G networks – the influence of e-health and IoT applications. In: International Multidisciplinary Conference on Computer and Energy Science (SpliTech), pp. 1–7 IEEE (2016). doi:10.1109/SpliTech.2016.7555949

  39. Ifrim, C., Pintilie, A.-M., Apostol, E., Dobre, C., Pop, F.: The art of advanced healthcare applications in big data and IoT systems. In: Mavromoustakis, C.X., Mastorakis, G., Dobre, C. (eds.) Advances in Mobile Cloud Computing and Big Data in the 5G Era. SBD, vol. 22, pp. 133–149. Springer, Cham (2017). doi:10.1007/978-3-319-45145-9_6

    Chapter  Google Scholar 

  40. Li, S., Xu, L.D., Zhao, S.: The Internet of Things: a survey. Inf. Syst. Front. 17, 243–259 (2015). doi:10.1007/s10796-014-9492-7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Tecnológico Nacional de México (TecNM) and sponsored by the National Council of Science and Technology (CONACYT), the Secretariat of Public Education (SEP) through PRODEP (Programa para el Desarrollo Profesional Docente) and the Sistema de Universidades Estatales de Oaxaca (SUNEO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Machorro-Cano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Machorro-Cano, I. et al. (2017). An IoT-Based Architecture to Develop a Healthcare Smart Platform. In: Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., Del Cioppo, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds) Technologies and Innovation. CITI 2017. Communications in Computer and Information Science, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-67283-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67283-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67282-3

  • Online ISBN: 978-3-319-67283-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics