Skip to main content

Ultrasound Elastography of Thyroid Nodules

  • Chapter
  • First Online:
Thyroid and Parathyroid Ultrasound and Ultrasound-Guided FNA

Abstract

Elastography technologies provide a new dimension in the evaluation of thyroid nodules. B-mode ultrasound imaging creates visualization of thyroid nodules but has a low sensitivity for predicting malignancy. Strain and shear wave elastography are next-generation technologies in evaluating thyroid nodules. They investigate differences in the mechanical properties of structures by applying an external force and monitoring the deformation response. Recent studies have demonstrated that strain and shear wave elastography stratify the malignancy risk for thyroid nodules as a single variable and in conjunction with other B-mode ultrasound features. Elastography can be added to B-mode ultrasound examinations of thyroid nodules. These technologies may improve our ability to detect thyroid cancer and lead to fewer unnecessary fine needle aspiration biopsies and thyroid surgeries. However, more prospective studies are required to determine the precise value of these new technologies in specific thyroid nodule subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ARFI:

Acoustic radiation force impulse

ES:

Elastography score

FNAB:

Fine needle aspiration biopsy

kPa:

Kilopascals

m/s:

Meters per second

NPV:

Negative predictive value

PPV:

Positive predictive value

PTC:

Papillary thyroid cancer

ROI:

Region of interest

SWE:

Shear wave elastography

SWV:

Shear wave velocity

US:

Ultrasound

VTIQ:

Virtual tissue imaging quantification

VTQ:

Virtual touch quantification

References

  1. Garra BS. Elastography: current status, future prospects, and making it work for you. Ultrasound Q. 2011;27(3):177–86. https://doi.org/10.1097/RUQ.0b013e31822a2138.

    Article  PubMed  Google Scholar 

  2. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  CAS  Google Scholar 

  3. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedüs L, Vitti P, AACE/AME/ETA Task Force on thyroid nodules. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association Medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. Endocr Pract. 2010;16(3):468–75.

    Article  Google Scholar 

  4. Azizi G, Keller J, Lewis M, Puett D, Rivenbark K, Malchoff C. Performance of elastography for the evaluation of thyroid nodules: a prospective study. Thyroid. 2013;23(6):734–40. https://doi.org/10.1089/thy.2012.0227.

    Article  PubMed  Google Scholar 

  5. Friedrich-Rust M, Vorlaender C, Dietrich CF, Kratzer W, Blank W, Schuler A, Broja N, Cui XW, Herrmann E, Bojunga J. Evaluation of strain elastography for differentiation of thyroid nodules: results of a prospective degum multicenter study. Ultraschall Med. 2016;37(3):262–70. https://doi.org/10.1055/s-0042-104647.

    Article  CAS  PubMed  Google Scholar 

  6. Veyrieres JB, Albarel F, Lombard JV, Berbis J, Sebag F, Oliver C, Petit P. A threshold value in shear wave elastography to rule out malignant thyroid nodules: a reality? Eur J Radiol. 2012;81:3965–72.

    Article  Google Scholar 

  7. Xu JM, Xu XH, Xu HX, Zhang YF, Zhang J, Guo LH, Liu LN, Liu C, Zheng SG. Conventional US, US elasticity imaging, and acoustic radiation force impulse imaging for prediction of malignancy in thyroid nodules. Radiology. 2014;272(2):577–86. https://doi.org/10.1148/radiol.14132438.

    Article  PubMed  Google Scholar 

  8. Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, Malchoff CD. Thyroid nodules and shear wave elastography: a new tool in thyroid cancer detection. Ultrasound Med Biol. 2015;41(11):2855–65. https://doi.org/10.1016/j.ultrasmedbio.2015.06.021.

    Article  PubMed  Google Scholar 

  9. Zhang FJ, Han RL. The value of acoustic radiation force impulse (ARFI) in the differential diagnosis of thyroid nodules. Eur J Radiol. 2013;82(11):e686–90. https://doi.org/10.1016/j.ejrad.2013.06.027.

    Article  PubMed  Google Scholar 

  10. Goertz RS, Amann K, Heide R, Bernatik T, Neurath MF, Strobel D. An abdominal and thyroid status with acoustic radiation force impulse elastometry–a feasibility study: acoustic radiation force impulse elastometry of human organs. Eur J Radiol. 2011;80(3):e226–30. https://doi.org/10.1016/j.ejrad.2010.09.025.

    Article  CAS  PubMed  Google Scholar 

  11. Ianculescu V, Ciolovan LM, Dunant A, Vielh P, Mazouni C, Delaloge S, Dromain C, Blidaru A, Balleyguier C. Added value of virtual touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol. 2014;83(5):773–7. https://doi.org/10.1016/j.ejrad.2014.01.021.

    Article  PubMed  Google Scholar 

  12. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260–74.

    Article  CAS  Google Scholar 

  13. Asteria C, Giovanardi A, Pizzocaro A, Cozzaglio L, Morabito A, Somalvico F, Zoppo A. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18(5):523–31. https://doi.org/10.1089/thy.2007.0323.

    Article  PubMed  Google Scholar 

  14. Johannessen JV, Sobrinho-Simões M. The origin and significance of thyroid psammoma bodies. Lab Investig. 1980;43(3):287–96.

    CAS  PubMed  Google Scholar 

  15. Komolafe F. Radiological patterns and significance of thyroid calcification. Clin Radiol. 1981;32(5):571–5.

    Article  CAS  Google Scholar 

  16. Cooper DS, Tiamson E, Ladenson PW. Psammoma bodies in fine needle aspiration biopsies of benign thyroid nodules. Thyroidology. 1988;1:55–9.

    Google Scholar 

  17. Lazebnik RS. Whitepaper: tissue strain analytics virtual touch tissue imaging and quantification. Ultrasound, Mountain View: Siemens Medical Solutions, USA, Inc.; 2008.

    Google Scholar 

  18. Xing P, Wu L, Zhang C, Li S, Liu C, Wu C. Differentiation of benign from malignant thyroid lesions: calculation of the strain ratio on thyroid sonoelastography. J Ultrasound Med. 2011;30(5):663–9.

    Article  Google Scholar 

  19. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, Yamakawa M, Matsumura T. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341–50.

    Article  Google Scholar 

  20. Rago T, Di Coscio G, Basolo F, Scutari M, Elisei R, Berti P, Miccoli P, Romani R, Faviana P, Pinchera A, Vitti P. Combined clinical, thyroid ultrasound and cytological features help to predict thyroid malignancy in follicular and Hupsilonrthle cell thyroid lesions: results from a series of 505 consecutive patients. Clin Endocrinol. 2007;66(1):13–20.

    CAS  Google Scholar 

  21. Rago T, Scutari M, Santini F, Loiacono V, Piaggi P, Di Coscio G, Basolo F, Berti P, Pinchera A, Vitti P. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab. 2010;95(12):5274–80. https://doi.org/10.1210/jc.2010-0901.

    Article  CAS  PubMed  Google Scholar 

  22. Benson J, Fan L. Tissue strain analytics, a complete ultrasound solution for elastography. https://www.cee.siemens.com/web/ua/ru/medecine/detection_diagnosis/ultrasaund/Tissue-Strain-Analytics/Documents/whitepaper_tissue_strain_pdf. Accessed 1 Dec 2012.

  23. Bell J. Siemens announces FDA clearance of virtual touch elastography imaging. Siemens Healthcare USA. Siemens, 24 June 2013. Web. 27 Oct 2014. http://usa.healthcare.siemens.com/press/pressreleases/healthcare-news-2013-06-24-1/.

  24. Bercoff J. SuperSonic imagine white paper: shear wave elastography. http://www.supersonicimagine.com/content/view/full/. Accessed 30 Oct 2012.

  25. Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P, Oliver C. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95:5281–8.

    Article  CAS  Google Scholar 

  26. Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. Am J Roentgenol. 2009;193:W416–23.

    Article  Google Scholar 

  27. Sporea I, Vlad M, Bota S, Sirli RL, Popescu A, Danila M, Sendroiu M, Zosin I. Thyroid stiffness assessment by acoustic radiation force impulse elastography (ARFI). Ultraschall Med. 2011;32(3):281–5. https://doi.org/10.1055/s-0029-1246048.

    Article  CAS  PubMed  Google Scholar 

  28. Liu BX, Xie XY, Liang JY, Zheng YL, Huang GL, Zhou LY, Wang Z, Xu M, Lu MD. Shear wave elastography versus real-time elastography on evaluation thyroid nodules: a preliminary study. Eur J Radiol. 2014;83(7):1135–43. https://doi.org/10.1016/j.ejrad.2014.02.024.

    Article  PubMed  Google Scholar 

  29. Bojunga J, Dauth N, Berner C, Meyer G, Holzer K, Voelkl L, Herrmann E, Schroeter H, Zeuzem S, Friedrich-Rust M. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One. 2012;7(8):e42735. https://doi.org/10.1371/journal.pone.0042735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Desmots F, Fakhry N, Mancini J, Reyre A, Vidal V, Jacquier A, Santini L, Moulin G, Varoquaux A. Shear wave elastography in head and neck lymph node assessment: image quality and diagnostic impact compared with B-mode and Doppler ultrasonography. Ultrasound Med Biol. 2016;42(2):387–98. https://doi.org/10.1016/j.ultrasmedbio.2015.10.019.

    Article  PubMed  Google Scholar 

  31. Choi YJ, Lee JH, Lim HK, Kim SY, Han MW, Cho KJ, Baek JH. Quantitative shear wave elastography in the evaluation of metastatic cervical lymph nodes. Ultrasound Med Biol. 2013;39(6):935–40. https://doi.org/10.1016/j.ultrasmedbio.2012.12.009.

    Article  PubMed  Google Scholar 

  32. Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, Malchoff CD. Shear wave elastography and cervical lymph nodes: predicting malignancy. Ultrasound Med Biol. 2016;42(6):1273–81. https://doi.org/10.1016/j.ultrasmedbio.2016.01.012.

    Article  PubMed  Google Scholar 

  33. Cheng KL, Choi YJ, Shim WH, Lee JH, Baek JH. Virtual touch tissue imaging quantification shear wave elastography: prospective assessment of cervical lymph nodes. Ultrasound Med Biol. 2016;42(2):378–86. https://doi.org/10.1016/j.ultrasmedbio.2015.10.003.

    Article  PubMed  Google Scholar 

Download references

Disclosure

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghobad Azizi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Azizi, G., Malchoff, C.D. (2018). Ultrasound Elastography of Thyroid Nodules. In: Duick, D., Levine, R., Lupo, M. (eds) Thyroid and Parathyroid Ultrasound and Ultrasound-Guided FNA . Springer, Cham. https://doi.org/10.1007/978-3-319-67238-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67238-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67237-3

  • Online ISBN: 978-3-319-67238-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics