Skip to main content

Topological Distances Between Brain Networks

  • Conference paper
  • First Online:
Connectomics in NeuroImaging (CNI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10511))

Included in the following conference series:

Abstract

Many existing brain network distances are based on matrix norms. The element-wise differences may fail to capture underlying topological differences. Further, matrix norms are sensitive to outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to develop network distances that recognize topology. In this paper, we introduce Gromov-Hausdorff (GH) and Kolmogorov-Smirnov (KS) distances. GH-distance is often used in persistent homology based brain network models. The superior performance of KS-distance is contrasted against matrix norms and GH-distance in random network simulations with the ground truths. The KS-distance is then applied in characterizing the multimodal MRI and DTI study of maltreated children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)

    Article  Google Scholar 

  2. Banks, D., Carley, K.: Metric inference for social networks. J. Classif. 11, 121–149 (1994)

    Article  MATH  Google Scholar 

  3. Bonner, M.F., Grossman, M.: Gray matter density of auditory association cortex relates to knowledge of sound concepts in primary progressive aphasia. J. Neurosci. 32, 7986–7991 (2012)

    Article  Google Scholar 

  4. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–98 (2009)

    Article  Google Scholar 

  5. Carlsson, G., Mémoli, F.: Characterization, stability and convergence of hierarchical clustering methods. J. Mach. Learn. Res. 11, 1425–1470 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Chung, M.K.: Computational Neuroanatomy: The Methods. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  7. Chung, M.K., Hanson, J.L., Ye, J., Davidson, R.J., Pollak, S.D.: Persistent homology in sparse regression and its application to brain morphometry. IEEE Trans. Med. Imaging 34, 1928–1939 (2015)

    Article  Google Scholar 

  8. Chung, M.K., Villalta-Gil, V., Lee, H., Rathouz, P.J., Lahey, B.B., Zald, D.H.: Exact topological inference for paired brain networks via persistent homology. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 299–310. Springer, Cham (2017). doi:10.1007/978-3-319-59050-9_24

    Chapter  Google Scholar 

  9. Cook, P.A., Bai, Y., Nedjati-Gilani, S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine (2006)

    Google Scholar 

  10. Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference. Chapman & Hall/CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  11. He, Y., Chen, Z., Evans, A.: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28, 4756 (2008)

    Article  Google Scholar 

  12. Jezzard, P., Clare, S.: Sources of distortion in functional MRI data. Hum. Brain Mapp. 8, 80–85 (1999)

    Article  Google Scholar 

  13. Joshi, S.C., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, 151–160 (2004)

    Article  Google Scholar 

  14. Lee, H., Kang, H., Chung, M.K., Kim, B.-N., Lee, D.S.: Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imaging 31, 2267–2277 (2012)

    Article  Google Scholar 

  15. Lee, H., Kang, H., Chung, M.K., Lim, S., Kim, B.-N., Lee, D.S.: Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology. Hum. Brain Mapp. 38, 1387–1402 (2017)

    Article  Google Scholar 

  16. Rubinov, M., Knock, S. A., Stam, C. J., Micheloyannis, S., Harris, A.W., Williams, L.M., Breakspear, M.: Small-world properties of nonlinear brain activity in schizophrenia

    Google Scholar 

  17. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010)

    Article  Google Scholar 

  18. Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005)

    Article  Google Scholar 

  19. Tuzhilin, A.A.: Who invented the Gromov-Hausdorff distance? arXiv preprint arXiv:1612.00728 (2016)

  20. Wijk, B.C.M., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5, e13701 (2010)

    Article  Google Scholar 

  21. Zhu, X., Suk, H.-I., Shen, D.: Matrix-similarity based loss function and feature selection for alzheimer’s disease diagnosis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3096 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by NIH Grants MH61285, MH68858, MH84051, UL1TR000427, Brain Initiative Grant EB022856 and Basic Science Research Program through the National Research Foundation (NRF) of Korea (NRF-2016R1D1A1B03935463). M.K.C. would like to thank professor A.M. Mathai of McGill University for asking to prove the convergence of KS test in a homework. That homework motivated the construction of KS-distance for graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo K. Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chung, M.K., Lee, H., Solo, V., Davidson, R.J., Pollak, S.D. (2017). Topological Distances Between Brain Networks. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B. (eds) Connectomics in NeuroImaging. CNI 2017. Lecture Notes in Computer Science(), vol 10511. Springer, Cham. https://doi.org/10.1007/978-3-319-67159-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67159-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67158-1

  • Online ISBN: 978-3-319-67159-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics