Skip to main content

Statistical Model Development for Military Aircraft Engine Exhaust Emissions Data

  • Chapter
  • First Online:
Advances in Sustainable Aviation

Abstract

Statistical regression models have a wide usage in various estimation problems. They can be used to find a relationship between dependent and independent variables. Generally, it is using regression parametric models to find the type of relationship between variables. But some problems could not be estimated with linear models, as they have a nonlinear effect on dependent variable. This study aims to show the difference between linear and nonlinear techniques. In this study, emission parameters of a military-type turboprop engine is determined at unmeasured operating points on the basis of data collected at various loads with the aid of regression techniques. It is using multivariate linear regression, additive models with B-spline basis function, and smoothing splines. Three different techniques used to reveal best approximation to the dataset. It is observed that the effect of three parameters: revolution per minute (min-1), air/fuel ratio (kg air/kg fuel), and mass flow rate (kg.s-1) to different mass flow rates (CO (kg/s), CO2 (kg/s); UHC (kg/s), NO2 (kg/s)). In the end of the study, results obtained from benefited approximations were compared with each other using MSE (mean squared error) performance criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ṁ:

Mass flow rate [kg/s]

p:

Static pressure [Pa]

P:

Total pressure [Pa]

P-GAM:

Penalized generalized additive model

q:

Dynamic pressure [Pa]

T:

Temperature [K]

x 1 ,  ⋯  , x n :

Knot points

b j (x):

Basis function

CV(λ):

Cross-validation method

f(x):

Regression function

f(μ i ):

Link function

GCV(λ):

Generalized cross-validation method

S(f):

Minimization function

λ :

Smoothing parameter

References

  1. IPCC Working Group-III. (2014). Climate change 2014: Mitigation of climate change. Intergovernmental Panel on Climate Change Report.

    Google Scholar 

  2. Sohret, Y., Karakoc, T. H., Karakoc, N. (2015). Mathematical modelling for carbon dioxide equivalent prediction of greenhouse gases emitted from a small scale turbojet engine. 7th AIAA Atmospheric and Space Environments Conference. AIAA 2015–3326.

    Google Scholar 

  3. Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N., Lim, L. L., Owen, B., & Sausen, R. (2009). Aviation and global climate change in 21st century. Atmospheric Environment, 43, 3520–3537.

    Article  Google Scholar 

  4. Altuntas, O. (2014). Calculation of domestic flight-caused global warming potential from aircraft emissions in Turkish airports. International Journal of Global Warming, 6, 367–379.

    Article  Google Scholar 

  5. Beck, J. P., Reeves, C. E., de Leeuw, F. A. A. M., & Penkett, S. A. (1992). The effect of aircraft emissions on tropospheric ozone in the Northern Hemisphere. Atmospheric Environment, 26, 17–29.

    Article  Google Scholar 

  6. Blakey, S., Rye, L., & Wilson, C. W. (2011). Aviation gas turbine alternative fuels: A review. Proceedings of the Combustion Institute, 33, 2863–2885.

    Article  Google Scholar 

  7. Fan, W., Sun, Y., Zhu, T., & Wen, Y. (2012). Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in China in 2010. Atmospheric Environment, 56, 52–57.

    Article  Google Scholar 

  8. Hileman, J. I., Blanco, E. D. R., Bonnefoy, P. A., & Carter, N. A. (2013). The carbon dioxide challenge facing aviation. Progress in Aerospace Sciences, 63, 84–95.

    Article  Google Scholar 

  9. Beyersdorf, A. J., Timko, M. T., Ziemba, L. D., Bulzan, D., Corporan, E., Herndon, S. C., Howard, R., Miake-Lye, R., Thornhill, K. L., Winstead, E., Wey, C., Yu, Z., & Anderson, B. E. (2014). Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels. Atmospheric Chemistry and Physics, 14, 11–23.

    Article  Google Scholar 

  10. Ekici, S., Yalin, G., Altuntas, O., & Karakoc, T. H. (2013). Calculation of HC, CO and NOx from civil aviation in Turkey in 2012. International Journal of Environment and Pollution, 53, 232–244.

    Article  Google Scholar 

  11. Synylo, K., & Duchene, N. (2014). NOx emission model of turbofan engine. International Journal of Sustainable Aviation, 1, 72–84.

    Article  Google Scholar 

  12. Yilmaz, I., & Ilbas, M. (2012). Investigation of pollutant emissions in aircraft gas turbine engines. Journal of the Faculty of Engineering and Architecture of Gazi University, 27, 343–351.

    Google Scholar 

  13. Wood, S. N. (2006). Generalized additive models: an introduction with R. Chapman Hall/CRC. (Texts in Statistical Science)

    MATH  Google Scholar 

  14. De Boor. (1978). A practical guide to splines. New York: Springer.

    Book  MATH  Google Scholar 

  15. Dierckx, P. (1993). Curve and surface fitting with splines. Oxford: Clarendon Press.

    MATH  Google Scholar 

  16. Green, P. J., & Silverman, B. W. (1994). Nonparametric regression and generalized linear models. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  17. Marx, B. D., & Eilers, P. H. C. (1996). Flexible smoothing using B-splines and penalized likelihood (with comments and rejoinders). Statistical Science, 11(2), 89–121.

    Article  MATH  MathSciNet  Google Scholar 

  18. Marx, B. D., & Eilers, P. H. C. (1998). Direct generalized additive modeling with penalized likelihood. Computational Statistics and Data Analysis, 28, 193–209.

    Article  MATH  Google Scholar 

  19. Vaught, J. M., Johnsen, S. E., Parks, W. M., & Johnson, R. L. (1971). Collection and assessment of aircraft emissions base-line data turboprop engines (Allison T56-A-15), Final Technical Report. EDR 7200. EPA Contract No: 68-04-0029. Ann Arbor: Environmental Protection Agency, Office of Air Programs.

    Google Scholar 

  20. Balli, O., & Hepbasli, A. (2013). Energetic and exergetic analyses of T56 turboprop engine. Energy Conversion and Management, 73, 106–120.

    Article  Google Scholar 

  21. Sohret, Y., Kıncay, O., & Karakoç, T. H. (2015). Combustion efficiency analysis and key emission parameters of a turboprop engine at various loads. Journal of the Energy Institute, 88(4), 490–499. ISSN 1743-9671.

    Article  Google Scholar 

Download references

Acknowledgments

Support provided by Anadolu and Suleyman Demirel Universities is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlitdin Nizamitdinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nizamitdinov, A., Şöhret, Y., Shamilov, A., Karakoç, T.H. (2018). Statistical Model Development for Military Aircraft Engine Exhaust Emissions Data. In: Karakoç, T., Colpan, C., Şöhret, Y. (eds) Advances in Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-319-67134-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67134-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67133-8

  • Online ISBN: 978-3-319-67134-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics