Skip to main content

Formal Verification of a Floating-Point Expansion Renormalization Algorithm

  • Conference paper
Interactive Theorem Proving (ITP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10499))

Included in the following conference series:

Abstract

Many numerical problems require a higher computing precision than the one offered by standard floating-point formats. A common way of extending the precision is to use floating-point expansions. As the problems may be critical and as the algorithms used have very complex proofs (many sub-cases), a formal guarantee of correctness is a wish that can now be fulfilled, using interactive theorem proving. In this article we give a formal proof in Coq for one of the algorithms used as a basic brick when computing with floating-point expansions, the renormalization, which is usually applied after each operation. It is a critical step needed to ensure that the resulted expansion has the same property as the input one, and is more “compressed”. The formal proof uncovered several gaps in the pen-and-paper proof and gives the algorithm a very high level of guarantee.

The authors would like to thank Région Rhône-Alpes and ANR FastRelax Project for the grants that support this activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abad, A., Barrio, R., Dena, A.: Computing periodic orbits with arbitrary precision. Phys. Rev. E 84, 016701 (2011)

    Article  Google Scholar 

  2. Bailey, D.H., Borwein, J.M.: High-precision arithmetic in mathematical physics. Mathematics 3(2), 337 (2015)

    Article  Google Scholar 

  3. Boldo, S.: Iterators: where folds fail. In: Workshop on High-Consequence Control Verification, Toronto, Canada, July 2016

    Google Scholar 

  4. Boldo, S., Daumas, M.: A mechanically validated technique for extending the available precision. In: 35th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, pp. 1299–1303 (2001)

    Google Scholar 

  5. Boldo, S., Melquiond, G.: Flocq: a unified library for proving floating-point algorithms in Coq. In: Proceedings of the 20th IEEE Symposium on Computer Arithmetic, Tübingen, Germany, pp. 243–252, July 2011

    Google Scholar 

  6. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2) (2007). http://www.mpfr.org/

  7. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating-point arithmetic. In: Burgess, N., Ciminiera, L. (eds.) Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH 2016), Vail, CO, pp. 155–162, June 2001

    Google Scholar 

  8. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008, August 2008

    Google Scholar 

  9. Jeannerod, C.P., Rump, S.M.: Improved error bounds for inner products in floating-point arithmetic. SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)

    Article  MathSciNet  Google Scholar 

  10. Joldes, M., Marty, O., Muller, J.M., Popescu, V.: Arithmetic algorithms for extended precision using floating-point expansions. IEEE Trans. Comput. PP(99), 1 (2015)

    MATH  Google Scholar 

  11. Joldes, M., Muller, J.-M., Popescu, V., Tucker, W.: CAMPARY: cuda multiple precision arithmetic library and applications. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 232–240. Springer, Cham (2016). doi:10.1007/978-3-319-42432-3_29

    Chapter  Google Scholar 

  12. Joldes, M., Popescu, V., Tucker, W.: Searching for sinks for the Hénon map using a multipleprecision GPU arithmetic library. SIGARCH Comput. Archit. News 42(4), 63–68 (2014)

    Article  Google Scholar 

  13. Kornerup, P., Lefèvre, V., Louvet, N., Muller, J.M.: On the computation of correctly-rounded sums. In: Proceedings of the 19th IEEE Symposium on Computer Arithmetic (ARITH 2019), Portland, OR, June 2009

    Google Scholar 

  14. Laskar, J., Gastineau, M.: Existence of collisional trajectories of mercury, mars and venus with the earth. Nature 459(7248), 817–819 (2009)

    Article  Google Scholar 

  15. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)

    Book  Google Scholar 

  16. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26(6), 1955–1988 (2005)

    Article  MathSciNet  Google Scholar 

  17. Priest, D.M.: Algorithms for arbitrary precision floating point arithmetic. In: Kornerup, P., Matula, D.W. (eds.) Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pp. 132–144. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

  18. Priest, D.M.: On properties of floating-point arithmetics: numerical stability and the cost of accurate computations. Ph.D. thesis, University of California at Berkeley (1992)

    Google Scholar 

  19. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: faithful rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)

    Article  MathSciNet  Google Scholar 

  20. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discret. Comput. Geom. 18, 305–363 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Boldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Boldo, S., Joldes, M., Muller, JM., Popescu, V. (2017). Formal Verification of a Floating-Point Expansion Renormalization Algorithm. In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017. Lecture Notes in Computer Science(), vol 10499. Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66107-0_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66106-3

  • Online ISBN: 978-3-319-66107-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics