Skip to main content

Peptides as Bio-inspired Molecular Electronic Materials

  • Chapter
  • First Online:
Peptides and Peptide-based Biomaterials and their Biomedical Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1030))

Abstract

Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abell AD, Alexander NA, Aitken SG, Chen H, Coxon JM, Jones MA, McNabb SB, Muscroft-Taylor A (2009a) Synthesis of macrocyclic beta-strand templates by ring closing metathesis. J Org Chem 74(11):4354–4356

    Article  CAS  PubMed  Google Scholar 

  • Abell AD, Jones MA, Coxon JM, Morton JD, Aitken SG, McNabb SB, Lee HYY, Mehrtens JM, Alexander NA, Stuart BG, Neffe AT, Bickerstaff R (2009b) Molecular modeling, synthesis, and biological evaluation of macrocyclic calpain inhibitors. Angew Chem Int Ed 48(8):1455–1458

    Article  CAS  Google Scholar 

  • Amdursky N (2013) Enhanced solid-state electron transport via tryptophan containing peptide networks. Phys Chem Chem Phys 15(32):13479–13482

    Article  CAS  PubMed  Google Scholar 

  • Angell YL, Burgess K (2007) Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem Soc Rev 36(10):1674–1689

    Article  CAS  PubMed  Google Scholar 

  • Antonello S, Formaggio F, Moretto A, Toniolo C, Maran F (2003) Anomalous distance dependence of electron transfer across peptide bridges. J Am Chem Soc 125(10):2874

    Article  CAS  PubMed  Google Scholar 

  • Arikuma Y, Takeda K, Morita T, Ohmae M, Kimura S (2009) Linker effects on monolayer formation and long-range electron transfer in helical peptide monolayers. J Phys Chem B 113(18):6256

    Article  CAS  PubMed  Google Scholar 

  • Arikuma Y, Nakayama H, Morita T, Kimura S (2010) Electron hopping over 100 angstrom along an alpha helix. Angew Chem Int Ed 49(10):1800

    Article  CAS  Google Scholar 

  • Arikuma Y, Nakayama H, Morita T, Kimura S (2011) Ultra-long-range electron transfer through a self-assembled monolayer on gold composed of 120-angstrom-long alpha-helices. Langmuir 27(4):1530

    Article  CAS  PubMed  Google Scholar 

  • Arrondo JLR, Goñi FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72(4):367–405

    Article  CAS  PubMed  Google Scholar 

  • Aubry S (2007) A nonadiabatic theory for electron transfer and application to ultrafast catalytic reactions. J Phys Condens Matter 19:255204

    Article  CAS  Google Scholar 

  • Avellini T, Li H, Coskun A, Barin G, Trabolsi A, Basuray AN, Dey SK, Credi A, Silvi S, Stoddart JF, Venturi M (2012) Photoinduced memory effect in a redox controllable bistable mechanical molecular switch. Angew Chem Int Ed 51(7):1611–1615

    Article  CAS  Google Scholar 

  • Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Beierle JM, Horne WS, van Maarseveen JH, Waser B, Reubi JC, Ghadiri MR (2009) Conformationally homogeneous heterocyclic pseudotetrapeptides as three-dimensional scaffolds for rational drug design: receptor-selective somatostatin analogues. Angew Chem Int Ed 48(26):4725–4729

    Article  CAS  Google Scholar 

  • Beiszinger M, Sticht H, Sutter M, Ejchart A, Haehnel W, Rosch P (1998) Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. EMBO J 17(1):27–36

    Article  Google Scholar 

  • Bendall DS (1996) Protein electron transfer. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Benesch C, Rode MF, Cizek M, Haertle R, Rubio-Pons O, Thoss M, Sobolewski AL (2009) Switching the conductance of a single molecule by photoinduced hydrogen transfer. J Phys Chem C 113(24):10315

    Article  CAS  Google Scholar 

  • Biron Z, Khare S, Samson AO, Hayek Y, Naider F, Anglister J (2002) A monomeric 3(10)-helix is formed in water by a 13-residue peptide representing the neutralizing determinant of HIV-1 on gp41. Biochemist 41(42):12687–12696

    Article  CAS  Google Scholar 

  • Boal AK, Guryanov I, Moretto A, Crisma M, Lanni EL, Toniolo C, Grubbs RH, O’Leary DJ (2007) Facile and E-selective intramolecular ring-closing metathesis reactions in 3(10)-helical peptides: a 3D structural study. J Am Chem Soc 129(22):6986–6987

    Article  CAS  PubMed  Google Scholar 

  • Bollinger JM Jr (2008) Biochemistry – electron relay in proteins. Science 320(5884):1730–1731

    Article  CAS  PubMed  Google Scholar 

  • Burton NA, Harrison MJ, Hart JC, Hillier IH, Sheppard DW (1998) Prediction of the mechanisms of enzyme-catalysed reactions using hybrid quantum mechanical molecular mechanical methods. Faraday Discuss 110:463–475

    Article  CAS  Google Scholar 

  • Chaudhry BR, Wilton-Ely J, Tabor AB, Caruana DJ (2010) Effect of peptide orientation on electron transfer. Phys Chem Chem Phys 12(34):9996

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Nikolovska-Coleska Z, Yang C-Y, Gomez C, Gao W, Krajewski K, Jiang S, Roller P, Wang S (2007) Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor of STAT3 via ‘click chemistry’. Bioorg Med Chem Lett 17(14):3939–3942

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang L, Zhang L, Wang J, Liu H, Bu Y (2009) Proton-regulated electron transfers from tyrosine to tryptophan in proteins: through-bond mechanism versus long-range hopping mechanism. J Phys Chem B 113(52):16681–16688

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-S, Hong M-Y, Huang GS (2012) A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol 7(3):197–203

    Article  PubMed  CAS  Google Scholar 

  • Chouhan G, James K (2011) CuAAC macrocyclization: high intramolecular selectivity through the use of copper–tris(triazole) ligand complexes. Org Lett 13(10):2754–2757

    Article  CAS  PubMed  Google Scholar 

  • Cordes M, Giese B (2009) Electron transfer in peptides and proteins. Chem Soc Rev 38(4):892–901

    Article  CAS  PubMed  Google Scholar 

  • Cordes M, Kottgen A, Jasper C, Jacques O, Boudebous H, Giese B (2008) Influence of amino acid side chains on long-distance electron transfer in peptides: electron hopping via “stepping stones”. Angew Chem Int Ed 47(18):3461–3463

    Article  CAS  Google Scholar 

  • Darwish N, Diez-Perez I, Guo S, Tao N, Gooding JJ, Paddon-Row MN (2012) Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule. J Phys Chem C 116(39):21093–21097

    Article  CAS  Google Scholar 

  • de Araujo AD, Hoang HN, Kok WM, Diness F, Gupta P, Hill TA, Driver RW, Price DA, Liras S, Fairlie DP (2014) Comparative alpha-helicity of cyclic pentapeptides in water. Angew Chem Int Ed 53(27):6965–6969

    Article  CAS  Google Scholar 

  • Ding W, Negre CFA, Palma JL, Durrell AC, Allen LJ, Young KJ, Milot RL, Schmuttenmaer CA, Brudvig GW, Crabtree RH, Batista VS (2014) Linker rectifiers for covalent attachment of transition metal catalysts to metal-oxide surfaces. ChemPhysChem 15(6):1138–1147

    Article  CAS  PubMed  Google Scholar 

  • Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery [mdash] an underexploited structural class. Nat Rev Drug Disc 7(7):608–624

    Article  CAS  Google Scholar 

  • Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 254(15-16):1769–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuelsson R, Löfås H, Wallner A, Nauroozi D, Baumgartner J, Marschner C, Ahuja R, Ott S, Grigoriev A, Ottosson H (2014) Configuration and conformation-dependent electronic structure variations in 1,4-disubstituted cyclohexanes enabled by a carbon-to-silicon exchange. Chem Eur J 20(30):9304–9311

    Article  CAS  PubMed  Google Scholar 

  • Galka MM, Kraatz HB (2002) Electron transfer studies on self-assembled monolayers of helical ferrocenoyl-oligoproline-cystamine bound to gold. ChemPhysChem 3(4):356–359

    Article  CAS  PubMed  Google Scholar 

  • Galoppini E, Fox MA (1996) Effect of the electric field generated by the helix dipole on photoinduced intramolecular electron transfer in dichromophoric alpha-helical peptides. J Am Chem Soc 118(9):2299

    Article  CAS  Google Scholar 

  • Gao J, Mueller P, Wang M, Eckhardt S, Lauz M, Fromm KM, Giese B (2011) Electron transfer in peptides: the influence of charged amino acids. Angew Chem Int Ed 50(8):1926–1930

    Article  CAS  Google Scholar 

  • Gatto E, Porchetta A, Scarselli M, De Crescenzi M, Formaggio F, Toniolo C, Venanzi M (2012) Playing with peptides: how to build a supramolecular peptide nanostructure by exploiting helix center dot center dot center dot helix macrodipole interactions. Langmuir 28(5):2817–2826

    Article  CAS  PubMed  Google Scholar 

  • Giese B, Graber M, Cordes M (2008) Electron transfer in peptides and proteins. Curr Opin Chem Biol 12(6):755–759

    Article  CAS  PubMed  Google Scholar 

  • Giese B, Wang M, Gao J, Stoltz M, Müller P, Graber M (2009) Electron relay race in peptides. J Org Chem 74(10):3621–3625

    Article  CAS  PubMed  Google Scholar 

  • Gooding JJ, Wibowo R, Liu YW, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125(30):9006–9007

    Article  CAS  PubMed  Google Scholar 

  • Han B, Chen X, Zhao J, Bu Y (2012) A peptide loop and an alpha-helix N-terminal serving as alternative electron hopping relays in proteins. Phys Chem Chem Phys 14(45):15849–15859

    Article  CAS  PubMed  Google Scholar 

  • Haris PI, Chapman D (1995) The conformational analysis of peptides using fourier transform IR spectroscopy. Biopolymers 37(4):251–263

    Article  CAS  PubMed  Google Scholar 

  • Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, London

    Google Scholar 

  • Hilinski GJ, Kim Y-W, Hong J, Kutchukian PS, Crenshaw CM, Berkovitch SS, Chang A, Ham S, Verdine GL (2014) Stitched α-helical peptides via bis ring-closing metathesis. J Am Chem Soc 136(35):12314–12322

    Article  CAS  PubMed  Google Scholar 

  • Holub JM, Kirshenbaum K (2010) Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition. Chem Soc Rev 39(4):1325–1337

    Article  CAS  PubMed  Google Scholar 

  • Holub JM, Jang H, Kirshenbaum K (2007) Fit to be tied: conformation-directed macrocyclization of peptoid foldamers. Org Lett 9(17):3275–3278

    Article  CAS  PubMed  Google Scholar 

  • Horsley JR, Yu J, Moore KE, Shapter JG, Abell AD (2014) Unraveling the interplay of backbone rigidity and electron rich side-chains on electron transfer in peptides: the realization of tunable molecular wires. J Am Chem Soc 136:12479–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsley JR, Yu J, Abell AD (2015) The correlation of electrochemical measurements and molecular junction conductance simulations in β-strand peptides. Chem Eur J 21:5926–5933

    Article  CAS  PubMed  Google Scholar 

  • Huisgen R (1963) 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed 2(10):565–598

    Article  Google Scholar 

  • Ingale S, Dawson PE (2011) On resin side-chain cyclization of complex peptides using CuAAC. Org Lett 13(11):2822–2825

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen O, Maekawa H, Ge NH, Gorbitz CH, Rongved P, Ottersen OP, Amiry-Moghaddam M, Klaveness J (2011) Stapling of a 3(10)-helix with click chemistry. J Org Chem 76(5):1228

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Takeda K, Morita T, Kimura S (2008) Distance dependence of long-range electron transfer through helical peptides. J Pept Sci 14(2):192–202

    Article  CAS  PubMed  Google Scholar 

  • Kapoerchan VV, Wiesner M, Overhand M, van der Marel GA, Koning F, Overkleeft HS (2008) Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Bioorg Med Chem 16(4):2053–2062

    Article  CAS  PubMed  Google Scholar 

  • Kirby DA, Britton KT, Aubert ML, Rivier JE (1997) Identification of high-potency neuropeptide Y analogues through systematic lactamization†. J Med Chem 40(2):210–215

    Article  CAS  PubMed  Google Scholar 

  • Lakhani A, Roy A, De Poli M, Nakaema M, Formaggio F, Toniolo C, Keiderling TA (2011) Experimental and theoretical spectroscopic study of 310-helical peptides using isotopic labeling to evaluate vibrational coupling. J Phys Chem B 115(19):6252–6264

    Article  CAS  PubMed  Google Scholar 

  • Langen R, Chang IJ, Germanas JP, Richards JH, Winkler JR, Gray HB (1995) Electron-tunneling in proteins - coupling through a bta-strand. Science 268(5218):1733–1735

    Article  CAS  PubMed  Google Scholar 

  • Lauz M, Eckhardt S, Fromm KM, Giese B (2012) The influence of dipole moments on the mechanism of electron transfer through helical peptides. Phys Chem Chem Phys 14(40):13785–13788

    Article  CAS  PubMed  Google Scholar 

  • Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263

    Google Scholar 

  • Long YT, Abu-Rhayem E, Kraatz HB (2005) Peptide electron transfer: more questions than answers. Chem Eur J 11(18):5186

    Article  CAS  PubMed  Google Scholar 

  • Looper RE, Pizzirani D, Schreiber SL (2006) Macrocycloadditions leading to conformationally restricted small molecules. Org Lett 8(10):2063–2066

    Article  CAS  PubMed  Google Scholar 

  • Lopez MS, Supuran AJ, Poulsen CT, Poulsen SA (2010) Carbonic anhydrase inhibitors developed through ‘click tailing’. Curr Pharm Des 16:3277–3287

    Article  CAS  PubMed  Google Scholar 

  • Loughlin WA, Tyndall JDA, Glenn MP, Fairlie DP (2004) Beta-strand mimetics. Chem Rev 104(12):6085–6118

    Article  CAS  PubMed  Google Scholar 

  • Lukacs A, Eker APM, Byrdin M, Brettel K, Vos MH (2008) Electron hopping through the 15 Å triple tryptophan molecular wire in DNA photolyase occurs within 30 ps. J Am Chem Soc 130(44):14394–14395

    Article  CAS  PubMed  Google Scholar 

  • Lundquist JT, Pelletier JC (2002) A new tri-orthogonal strategy for peptide cyclization. Org Lett 4(19):3219–3221

    Article  CAS  PubMed  Google Scholar 

  • Lung F-DT, Collins N, Stropova D, Davis P, Yamamura HI, Porreca F, Hruby VJ (1996) Design, synthesis, and biological activities of cyclic lactam peptide analogues of dynorphin A(1−11)-NH21. J Med Chem 39(5):1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Sakamoto R, Nishihara H (2013) Metal complex oligomer and polymer wires on electrodes: tactical constructions and versatile functionalities. Polymer 54(17):4383–4403

    Article  CAS  Google Scholar 

  • Maekawa H, Toniolo C, Broxterman QB, Ge N-H (2007) Two-dimensional infrared spectral signatures of 310- and α-helical peptides. J Phys Chem B 111(12):3222–3235

    Article  CAS  PubMed  Google Scholar 

  • Malak RA, Gao ZN, Wishart JF, Isied SS (2004) Long-range electron transfer across peptide bridges: the transition from electron superexchange to hopping. J Am Chem Soc 126(43):13888

    Article  CAS  PubMed  Google Scholar 

  • Malesevic M, Strijowski U, Bächle D, Sewald N (2004) An improved method for the solution cyclization of peptides under pseudo-high dilution conditions. J Biotechnol 112(1-2):73–77

    Article  CAS  PubMed  Google Scholar 

  • Mandal HS, Kraatz H-B (2012) Electron transfer mechanism in helical peptides. J Phys Chem Lett 3(6):709–713

    Article  CAS  PubMed  Google Scholar 

  • Marques-Gonzalez S, Yufit DS, Howard JAK, Martin S, Osorio HM, Garcia-Suarez VM, Nichols RJ, Higgins SJ, Cea P, Low PJ (2013) Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule-gold contact. Dalton T 42(2):338–341

    Article  CAS  Google Scholar 

  • McCreery RL, Bergren AJ (2009) Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication. Adv Mater 21(43):4303–4322

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Kimura S (2003) Long-range electron transfer over 4 nm governed by an inelastic hopping mechanism in self-assembled monolayers of helical peptides. J Am Chem Soc 125(29):8732–8733

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Kimura S, Kobayashi S, Imanishi Y (2000) Photocurrent generation under a large dipole moment formed by self-assembled monolayers of helical peptides having an N-ethylcarbazolyl group. J Am Chem Soc 122(12):2850–2859

    Article  CAS  Google Scholar 

  • Morita T, Yanagisawa K, Kimura S (2008) Enhanced photocurrent generation by electron hopping through regularly-arranged chromophores in a helical peptide monolayer. Polym J 40(8):700–709

    Article  CAS  Google Scholar 

  • Nakayama H, Kimura S (2009) Chirally twisted oligo(phenyleneethynylene) by cyclization with alpha-helical peptide. J Org Chem 74(9):3462–3468

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus DE, P. A (1993) Methods in molecular biology, vol 17. Humana Press, Clifton

    Google Scholar 

  • Niggli DA, Ebert M-O, Lin Z, Seebach D, van Gunsteren WF (2012) Helical content of a β3-octapeptide in methanol: molecular dynamics simulations explain a seeming discrepancy between conclusions derived from CD and NMR data. Chem Eur J 18(2):586–593

    Article  CAS  PubMed  Google Scholar 

  • Ousaka N, Sato T, Kuroda R (2007) Intramolecular crosslinking of an optically inactive 310-helical peptide: stabilization of structure and helix sense. J Am Chem Soc 130(2):463–465

    Article  CAS  Google Scholar 

  • Paredes SB, Reiter C, Rodriguez R, A. (2009) Assessment of the potential role of tryptophan as the precursor of serotonin and melatonin for the aged sleep-wake cycle and immune function: streptopelia risoria as a model. Int J Tryptophan Res 2:23–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen DS, Abell A (2011) 1,2,3-triazoles in peptidomimetic chemistry. Eur J Org Chem 2011(13):2399–2411

    Article  CAS  Google Scholar 

  • Peeters E, Christiaans MPT, Janssen RAJ, Schoo HFM, Dekkers HPJM, Meijer EW (1997) Circularly polarized electroluminescence from a polymer light-emitting diode. J Am Chem Soc 119(41):9909–9910

    Article  CAS  Google Scholar 

  • Pehere AD, Abell AD (2012) New beta-strand templates constrained by Huisgen cycloaddition. Org Lett 14(5):1330–1333

    Article  CAS  PubMed  Google Scholar 

  • Pehere AD, Pietsch M, Gütschow M, Neilsen PM, Pedersen DS, Nguyen S, Zvarec O, Sykes MJ, Callen DF, Abell AD (2013a) Synthesis and extended activity of triazole-containing macrocyclic protease inhibitors. Chem Eur J 19(24):7975–7981

    Article  CAS  PubMed  Google Scholar 

  • Pehere AD, Sumby CJ, Abell AD (2013b) New cylindrical peptide assemblies defined by extended parallel [small beta]-sheets. Org Biomol Chem 11(3):425–429

    Article  CAS  PubMed  Google Scholar 

  • Petrov EG, Shevchenko YV, Teslenko VI, May V (2001) Nonadiabatic donor-acceptor electron transfer mediated by a molecular bridge: a unified theoretical description of the superexchange and hopping mechanism. J Chem Phys 115(15):7107–7122

    Article  CAS  Google Scholar 

  • Petrov EG, Shevchenko YV, May V (2003) On the length dependence of bridge-mediated electron transfer reactions. Elsevier 288:269–279

    CAS  Google Scholar 

  • Polo F, Antonello S, Formaggio F, Toniolo C, Maran F (2005) Evidence against the hopping mechanism as an important electron transfer pathway for conformationally constrained oligopeptides. J Am Chem Soc 127(2):492

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283

    Article  CAS  PubMed  Google Scholar 

  • Riek RP, Rigoutsos I, Novotny J, Graham RM (2001) Non-α-helical elements modulate polytopic membrane protein architecture. J Mol Biol 306(2):349–362

    Article  CAS  PubMed  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  CAS  Google Scholar 

  • Sarangi NK, Patnaik A (2012) L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence. ChemPhysChem 13(18):4258–4270

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Makino M, Sisido M, Smith TA, Ghiggino KP (2001) Photoinduced electron transfer on beta-sheet cyclic peptides. J Phys Chem B 105(42):10416–10423

    Article  CAS  Google Scholar 

  • Schievano E, Bisello A, Chorev M, Bisol A, Mammi S, Peggion E (2001) Aib-rich peptides containing lactam-bridged side chains as models of the 3(10)-helix. J Am Chem Soc 123(12):2743–2751

    Article  CAS  PubMed  Google Scholar 

  • Schlag EW, Sheu SY, Yang DY, Selzle HL, Lin SH (2000) Charge conductivity in peptides: dynamic simulations of a bifunctional model supporting experimental data. PNASUSA 97(3):1068–1072

    Article  CAS  Google Scholar 

  • Schlag EW, Sheu SY, Yang DY, Selzle HL, Lin SH (2007) Distal charge transport in peptides. Angew Chem Int Ed 46(18):3196–3210

    Article  CAS  Google Scholar 

  • Sek S (2013) Review peptides and proteins wired into the electrical circuits: an SPM-based approach. Biopolymers 100(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Sek S, Sepiol A, Tolak A, Misicka A, Bilewicz R (2004) Distance dependence of the electron transfer rate through oligoglycine spacers introduced into self-assembled monolayers. J Phys Chem B 108(24):8102–8105

    Article  CAS  Google Scholar 

  • Seyedsayamdost MR, Yee CS, Reece SY, Nocera DG, Stubbe J (2006) pH rate profiles of FnY356−R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway. J Am Chem Soc 128(5):1562–1568

    Article  CAS  PubMed  Google Scholar 

  • Shih C, Museth AK, Abrahamsson M, Blanco-Rodriguez AM, Di Bilio AJ, Sudhamsu J, Crane BR, Ronayne KL, Towrie M, Vlcek A, Richards JH, Winkler JR, Gray HB (2008) Tryptophan-accelerated electron flow through proteins. Science 320(5884):1760–1762

    Article  CAS  PubMed  Google Scholar 

  • Sisido M, Hoshino S, Kusano H, Kuragaki M, Makino M, Sasaki H, Smith TA, Ghiggino KP (2001) Distance dependence of photoinduced electron transfer along alpha-helical polypeptides. J Phys Chem B 105(42):10407–10415

    Article  CAS  Google Scholar 

  • Smestad GP, Gratzel M (1998) Demonstrating electron transfer and nanotechnology: a natural dye-sensitised nanocrystalline energy converter. J Chem Educ 75(6):752–756

    Article  CAS  Google Scholar 

  • Smeu M, Wolkow RA, Guo H (2009) Conduction pathway of π-stacked ethylbenzene molecular wires on Si(100). J Am Chem Soc 131(31):11019–11026

    Article  CAS  PubMed  Google Scholar 

  • Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM (1996) Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol 255(3):494–506

    Article  CAS  PubMed  Google Scholar 

  • Staykov A, Li X, Tsuji Y, Yoshizawa K (2012) Current rectification in nitrogen- and boron-doped nanographenes and cyclophanes. J Phys Chem C 116(34):18451–18459

    Article  CAS  Google Scholar 

  • Stubbe J, Nocera DG, Yee CS, Chang MCY (2003) Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 103(6):2167–2202

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Morita T, Kimura S (2008) Effects of monolayer structures on long-range electron transfer in helical peptide monolayer. J Phys Chem B 112(40):12840–12850

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW (2002) The synthesis and study of side-chain lactam-bridged peptides. Biopolymers 66(1):49–75

    Article  CAS  PubMed  Google Scholar 

  • Toniolo C, Benedetti E (1991) The polypeptide 310-helix. Trends Biochem Sci 16(0):350–353

    Google Scholar 

  • Toniolo C, Polese A, Formaggio F, Crisma M, Kamphuis J (1996) Circular dichroism spectrum of a peptide 3(10)-helix. J Am Chem Soc 118(11):2744–2745

    Article  CAS  Google Scholar 

  • Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  PubMed  CAS  Google Scholar 

  • Uji H, Morita T, Kimura S (2013) Molecular direction dependence of single-molecule conductance of a helical peptide in molecular junction. Phys Chem Chem Phys 15(3):757–760

    Article  CAS  PubMed  Google Scholar 

  • van Lierop BJ, Bornschein C, Jackson WR, Robinson AJ (2011) Ring-closing metathesis in peptides - the sting is in the tail! Aust J Chem 64(6):806–811

    Article  CAS  Google Scholar 

  • Wang M, Gao J, Muller P, Giese B (2009) Electron transfer in peptides with cysteine and methionine as relay amino acids. Angew Chem Int Ed 48(23):4232–4234

    Article  CAS  Google Scholar 

  • Watanabe J, Morita T, Kimura S (2005) Effects of dipole moment, linkers, and chromophores at side chains on long-range electron transfer through helical peptides. J Phys Chem B 109(30):14416

    Article  CAS  PubMed  Google Scholar 

  • Wittekindt C, Schwarz M, Friedrich T, Koslowski T (2009) Aromatic amino acids as stepping stones in charge transfer in respiratory complex I: an unusual mechanism deduced from atomistic theory and bioinformatics. J Am Chem Soc 131(23):8134–8140

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Cui B, Ji G, Li D, Liu D (2013) Effect of the orientation of nitro group on the electronic transport properties in single molecular field-effect transistors. Phys Chem Chem Phys 15(3):832–836

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa K, Morita T, Kimura S (2004) Efficient photocurrent generation by self-assembled monolayers composed of 3(10)-helical peptides carrying linearly spaced naphthyl groups at the side chains. J Am Chem Soc 126(40):12780–12781

    Article  CAS  PubMed  Google Scholar 

  • Yasutomi S, Morita T, Imanishi Y, Kimura S (2004) A molecular photodiode system that can switch photocurrent direction. Science 304(5679):1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Yasutomi S, Morita T, Kimura S (2005) pH-controlled switching of photocurrent direction by self-assembled monolayer of helical peptides. Journal of the Am Chem Soc 127(42):14564–14565

    Article  CAS  Google Scholar 

  • Yew SY, Shekhawat G, Wangoo N, Mhaisalkar S, Suri CR, Dravid VP, Lam YM (2011) Design of single peptides for self-assembled conduction channels. Nanotechnology 22:215606

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Zvarec O, Huang DM, Bissett MA, Scanlon DB, Shapter JG, Abell AD (2012) Electron transfer through α-peptides attached to vertically aligned carbon nanotube arrays: a mechanistic transition. Chem Comm 48(8):1132–1134

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Horsley JR, Moore KE, Shapter JG, Abell AD (2014) The effect of a macrocyclic constraint on electron transfer in helical peptides: a step towards tunable molecular wires. Chem Comm 50(14):1652

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Horsley JR, Abell AD (2016) Turning electron transfer ‘on-off’ in peptides through side-bridge gating. Electrochim Acta 209:65–74

    Article  CAS  Google Scholar 

  • Yu J, Horsley JR, Abell AD (2017) Exploiting the interplay of quantum interference and backbone rigidity on electronic transport in peptides: a step towards bio-inspired quantum interferometers. Mol Sys Des Eng 2:67–77

    Article  CAS  Google Scholar 

  • Zhuang W, Hayashi T, Mukamel S (2009) Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges. Angew Chem Int Ed 48(21):3750–3781

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP). The authors also gratefully acknowledge the assistance of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Horsley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horsley, J., Yu, J., Yeoh, Y.Q., Abell, A. (2017). Peptides as Bio-inspired Molecular Electronic Materials. In: Sunna, A., Care, A., Bergquist, P. (eds) Peptides and Peptide-based Biomaterials and their Biomedical Applications. Advances in Experimental Medicine and Biology, vol 1030. Springer, Cham. https://doi.org/10.1007/978-3-319-66095-0_6

Download citation

Publish with us

Policies and ethics