Skip to main content

Deriving the PRx and CPPopt from 0.2-Hz Data: Establishing Generalizability to Bedmaster Users

  • Conference paper
  • First Online:
Intracranial Pressure & Neuromonitoring XVI

Abstract

Objective: The objective was to explore the validity of industry-parameterized vital signs in the generation of pressure reactivity index (PRx) and optimal cerebral perfusion pressure (CPPopt) values.

Materials and methods: Ten patients with intracranial pressure (ICP) monitors from 2008 to 2013 in a tertiary care hospital were included. Arterial blood pressure (ABP) and ICP were sampled at 240 Hz (of waveform data) and 0.2 Hz (of parameterized data produced by heuristic industry proprietary algorithms). 240-Hz ABP were filtered for pulse pressure and diastolic ABP within the limits of 20–150 mmHg. The PRx was calculated as Pearson’s correlation coefficient using 10-s averages of ICP and ABP over a 5-min moving window with 80% overlap. For ease of comparison, we used the naming convention of BMx for PRx values derived from 0.2-Hz data. A 5-min median cerebral perfusion pressure (CPP) trend was calculated, PRx or BMx values divided and averaged into CPP bins spanning 5 mmHg. The minimum Y value (PRx or BMx) of the parabolic function fit to the resulting XY plot of 4 h of data was obtained, and updated every 1 min. Pearson’s R correlations were calculated for each patient. Linear mixed-effects models were used with a random intercept to assess the overall correlation between the PRx (outcome) and the BMx (fixed effect) or the CPPopt-PRx (outcome) and the CPPopt-BMx (fixed effect).

Results: The overall correlation between the PRx and BMx was 0.78 based on the linear mixed effects models (p < 0.0001), and the overall correlation for the CPPopt–PRx and CPPopt–BMx based on the linear mixed effects models was 0.76 (p < 0.0001). One patient had low correlation of CPPopts derived from the PRx vs the BMx; this patient had the least number of hours of CPPopt data to compare.

Conclusions: The BMx shows promise in CPPopt derivation against the validated PRx measure. If further developed, it could expand the capability of centers to derive CPPopt goals for use in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30(4):733–8.

    Article  PubMed  Google Scholar 

  2. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7. discussion 7–9

    Article  CAS  PubMed  Google Scholar 

  3. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, et al. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;34(10):2404–9.

    Article  PubMed  Google Scholar 

  4. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4):E2.

    Article  PubMed  Google Scholar 

  5. Consonni F, Abate MG, Galli D, Citerio G. Feasibility of a continuous computerized monitoring of cerebral autoregulation in neurointensive care. Neurocrit Care. 2009;10(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  6. Brady KM, Shaffner DH, Lee JK, Easley RB, Smielewski P, Czosnyka M, et al. Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics. 2009;124(6):e1205–12.

    Article  PubMed  Google Scholar 

  7. Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40(8):2456–63.

    Article  PubMed  Google Scholar 

  8. Smielewski P, Czosnyka M, Zabolotny W, Kirkpatrick P, Richards H, Pickard JD. A computing system for the clinical and experimental investigation of cerebrovascular reactivity. Int J Clin Monit Comput. 1997;14(3):185–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SP is supported by grant funding NIH K01 ES026833.

Disclosures: None.

Conflicts of interest statement

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soojin Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Megjhani, M. et al. (2018). Deriving the PRx and CPPopt from 0.2-Hz Data: Establishing Generalizability to Bedmaster Users. In: Heldt, T. (eds) Intracranial Pressure & Neuromonitoring XVI. Acta Neurochirurgica Supplement, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-65798-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65798-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65797-4

  • Online ISBN: 978-3-319-65798-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics