Skip to main content

A Minimally Invasive Endovascular Stent-Electrode Array for Chronic Recordings of Cortical Neural Activity

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Intracranial electrode arrays for recording and stimulating electrical brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. When compared to scalp electroencephalography (EEG), cortical recordings have demonstrated superior spatial resolution and consequently a greater potential for cognitive command output. Traditional cortical arrays require direct implantation into the brain via open craniotomy, which is a delicate and lengthy procedure. This can lead to inflammatory tissue responses amongst other clinical complications and has necessitated the development of minimally invasive methods that circumvent or mitigate brain trauma. In this study, we demonstrate the feasibility of chronically recording brain activity from within an external cerebral vein using a passive stent - electrode recording array (stentrode). We achieved implantation into a superficial cortical vein lying adjacent to the motor cortex using catheter angiography. Access was made via vascular puncture in the external jugular vein in the neck. Following successful implantation, we demonstrated neural recordings in freely moving sheep for time periods up to 190 days. Venous internal lumen patency was preserved for the duration of implantation. Spectral content and bandwidth of vascular electrocorticography were found to be comparable to those of recordings from epidural surface arrays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deuschl G, Schade-Brittinger C, Krack P et al (2006) A randomized trial of deep-brain stimulation for parkinson’s Disease. N Engl J Med 355:896–908. doi:10.1056/NEJMoa060281

    Article  Google Scholar 

  2. Cook MJ, O’Brien TJ, Berkovic SF et al (2013) Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. Lancet Neurol 12:563–571. doi:10.1016/S1474-4422(13)70075-9

    Article  Google Scholar 

  3. Morrell MJ (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77:1295–1304. doi:10.1212/WNL.0b013e3182302056

    Article  Google Scholar 

  4. Hochberg LR, Serruya MD, Friehs GM et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171. doi:10.1038/nature04970

    Article  Google Scholar 

  5. Yanagisawa T, Hirata M, Saitoh Y et al (2012) Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol 71:353–361. doi:10.1002/ana.22613

    Article  Google Scholar 

  6. Wilson BS, Finley CC, Lawson DT et al (1991) Better speech recognition with cochlear implants. Nature 352:236–238. doi:10.1038/352236a0

    Article  Google Scholar 

  7. Weiland JD, Cho AK, Humayun MS (2011) Retinal Prostheses: Current Clinical Results and Future Needs. Ophthalmology 118:2227–2237. doi:10.1016/j.ophtha.2011.08.042

    Article  Google Scholar 

  8. Oxley TJ, Opie NL, John SE et al., Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol 34:320–327. doi:10.1038/nbt.3428

  9. Yanagisawa T, Hirata M, Saitoh Y et al (2009) Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage 45:1099–1106. doi:10.1016/j.neuroimage.2008.12.069

    Article  Google Scholar 

  10. Chimowitz MI, Lynn MJ, Derdeyn CP et al (2011) Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis. N Engl J Med 365:993–1003. doi:10.1056/NEJMoa1105335

    Article  Google Scholar 

  11. Puffer RC, Mustafa W, Lanzino G (2013) Venous sinus stenting for idiopathic intracranial hypertension: a review of the literature. J Neurointerv Surg 5:483–486. doi:10.1136/neurintsurg-2012-010468

    Article  Google Scholar 

  12. van der Giessen WJ, Serruys PW, van Beusekom HM et al., (1991) Coronary stenting with a new, radiopaque, balloon-expandable endoprosthesis in pigs. Circulation 83:1788LP–1798. http://circ.ahajournals.org/content/83/5/1788.abstract

  13. Watanabe H, Takahashi H, Nakao M et al (2009) Intravascular neural interface with nanowire electrode. Electron Commun Japan 92:29–37. doi:10.1002/ecj.10058

    Article  Google Scholar 

  14. Mikuni N, Ikeda A, Murao K et al (1997) ‘Cavernous Sinus EEG’: A new method for the preoperative evaluation of temporal lobe epilepsy. Epilepsia 38:472–482. doi:10.1111/j.1528-1157.1997.tb01738.x

    Article  Google Scholar 

  15. Bower MR, Stead M, Van Gompel JJ et al (2013) Intravenous recording of intracranial, broadband EEG. J Neurosci Methods 214:21–26. doi:10.1016/j.jneumeth.2012.12.027

    Article  Google Scholar 

  16. Boniface SJ, Antoun N (1997) Endovascular electroencephalography: the technique and its application during carotid amytal assessment. J Neurol Neurosurg Psychiatry 62:193–195

    Article  Google Scholar 

  17. Penn RD, Hilal SK, Michelsen WJ et al (1973) Intravascular intracranial EEG recording - technical note. J Neurosurg 38:239–243. doi:10.3171/jns.1973.38.2.0239

    Article  Google Scholar 

  18. Driller J, Hilal SK, Michelsen WJ et al., (1969) Development and use of the POD catheter in the cerebral vascular system. Med Res Eng 8:11–6. http://europepmc.org/abstract/MED/5823257

  19. Lukatch HS, Kiddoo CE, Maciver MB (2005) Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission. Cereb Cortex 15:1322–1331. doi:10.1093/cercor/bhi015

    Article  Google Scholar 

Download references

Acknowledgements

The Vascular Bionics Laboratory would like to acknowledge all participants and contributors to our work thus far. In particular, we would like to recognise the input of

The University of Melbourne

• Dept. of Medicine

• Dept. of Electrical and Electronic Engineering

The Florey Institute of Neuroscience and Mental Health

The Royal Melbourne Hospital

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Oxley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Oxley, T.J. et al. (2017). A Minimally Invasive Endovascular Stent-Electrode Array for Chronic Recordings of Cortical Neural Activity. In: Guger, C., Allison, B., Lebedev, M. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-64373-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64373-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64372-4

  • Online ISBN: 978-3-319-64373-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics