Skip to main content

Historical Landmarks in an Understanding of the Lymphomas

  • Chapter
  • First Online:
Book cover Neoplastic Diseases of the Blood

Abstract

The knowledge that a group of closely related neoplasms, the lymphomas, originated in the mutation of protoncogenes in a single lymphocyte resulted from several principal antecedent discoveries: (1) the description of the anatomy of the lymph nodes and the description of the white matter of the spleen by Malpighi, (2) the definition of the lymphatic system by Thomas Hewson to include the lymph nodes, spleen, thymus, and the lymphatic vessels, (3) the development of techniques to biopsy and prepare tissue for microscopic examination and the application of the compound microscope to the examination of normal and pathological lymphatic tissue, (4) the description by Thomas Hodgkin of the clinical histories and gross postmortem findings of seven patients in whom prominent lymphadenopathy with splenomegaly was identified as a specific morbid condition. (5) Subsequently, (non-Hodgkin) lymphoma (originally called lymphosarcoma) was described, probably first by the great surgeon and pathologist, Billroth, and subsequently by Kundrat, a student of Billroth, and others. The application of microscopic anatomy began to define the histopathology of subsets of lymphoma, notably Hodgkin’s disease and follicular lymphoma, initially. (6) Radiation therapy was applied to treatment of Hodgkin’s disease very soon after Röntgen’s description of X-rays. About 45 years later, chemotherapy was introduced for both Hodgkin’s disease and lymphoma, as a result of the synthesis of nitrogen mustard compounds, developed to permit laboratory studies of solutions rather than gases, such as sulfur mustards, originally developed for gas warfare in World War I, and further explored in anticipation of their use in World War II. (7) Advances in histopathological descriptions lead to the appreciation of the numerous histological types of lymphoma and subsets of Hodgkin’s disease. (8) The development of imaging procedures led to their use in determining the extent of the disease in the lymphoid system, which influenced the approach to therapy. Curative therapy for Hodgkin’s disease first resulted from extended field radiation, including apparently uninvolved neighboring regions, and, later, from multidrug chemotherapy regimens. (9) Although most types of lymphoma are the result of de novo (endogenous) mutations and gene rearrangements, infectious agents, e.g., Helicobacter pylori and human lymphocytotropic virus 1, have been established as causative agents, uncommonly. Other viruses (e.g., Epstein–Barr, hepatitis C) have been associated with lymphoma, but it is unclear how they play a role in the neoplastic-transforming events. (10) Advances in histopathology, immunology, cytoimmunochemistry, cytogenetics, and genetics contribute to the modern classification of the lymphomas. This chapter describes this sequence of events and details the progression of discoveries that have led to the modern concept of lymphoma, its classification, and therapeutic advances. Where space permits, the advances in scientific concepts permitting these discoveries are discussed.

Note: Many of the English, Scottish, and Irish physicians or scientists discussed in this chapter received a knighthood and the appellation “Sir” could be used. Since they virtually all did their seminal work before they had been knighted, I have not identified them as “Sir” in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    At this period, the Siemens company (and other German industries) had abetted the rise of the National Socialist Workers Party (commonly called the Nazi party) and supported the policies of Adolph Hitler (1889–1945). A few years later, Siemens built electronics factories in the close vicinity of concentration camps and used slave labor in its plants. The company was complicit in the worst aspects of the Third Reich’s inhumane policies and its execution of the Holocaust. Siemens ran factories at Ravensbrück (a camp limited to women prisoners at which brutality and vile and grotesque medical experiments were the norm) and in the Auschwitz subcamp of Bobrek among others [7].

References

  1. Sinkovics JG. The cell survival pathways of the primordial RNA–DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol. 2015;5:25–43.

    Article  CAS  Google Scholar 

  2. Nerlich AG, Rohrbach H, Bachmeier B, Zink A. Malignant tumors in two ancient populations: an approach to historical tumor epidemiology. Oncol Rep. 2006;16:197–202.

    PubMed  Google Scholar 

  3. Pahl WM. Tumors of bone and soft tissues in ancient Egypt and Nubia: synopsis of detected cases. Int J Anthropol. 1986;1:267–76.

    Article  Google Scholar 

  4. Halperin EC. Paleo-oncology: the role of ancient remains in the study of cancer. Perspect Biol Med. 2004;47:1–14.

    Article  PubMed  Google Scholar 

  5. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8.

    Article  PubMed  CAS  Google Scholar 

  6. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wiesen SJ. German industry and the third Reich. Dimension. 1999;13:1–9.

    Google Scholar 

  8. Adelman HB. Marcello Malpigi and the evolution of embryology, vol. I. Ithaca, NY: Cornell University Press; 1960. p. 456–61.

    Google Scholar 

  9. Doyle D. William Hewson (1739–74): the father of haematology. Br J Haematol. 2006;133:375–81.

    Article  PubMed  Google Scholar 

  10. Virchow R. Cellular pathology as based upon physiological and pathological histology. Translated by frank chance from the second German edition published in 1863. New York: Dover Publications; 1971. p. 189–210.

    Google Scholar 

  11. Huard P, Imbault-Huart MJ, Peyer JC. Complete dictionary of medical biography. New York: Charles Scribner’s Sons; 2008. Encyclopedia.com.

    Google Scholar 

  12. Gaylord HR, Aschoff L. Chapter X: the principles of pathological histology. In: The lymph nodes. Philadelphia/New York: Lea Brothers & Co; 1901. p. 189–94.

    Google Scholar 

  13. Hodgkin T. On some morbid appearances of the absorbent glands and spleen. Med Chir Trans. 1832;17:68–114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Murray TJ. Robert Carswell: the first illustrator of MS. Int MS J. 2009;16:98–101.

    PubMed  CAS  Google Scholar 

  15. Hollman A. The paintings and pathological anatomy by sir Robert Carswell (1793–1857). Heart. 1995;74:566–70.

    Article  CAS  Google Scholar 

  16. Carswell R. Pathological anatomy: illustrations of the elementary forms of disease. London, UK: Longman; 1838.

    Google Scholar 

  17. Dawson P. The original illustrations of Hodgkin’s disease. Ann Diagn Pathol. 1999;3:386–9.

    Article  PubMed  CAS  Google Scholar 

  18. Craigie D. Elements of general and pathological anatomy. Edinburgh: Adam Black; 1828. p. 250.

    Google Scholar 

  19. Kaplan H. Hodgkin disease, historical aspects. 2nd ed. Cambridge, MA: Harvard University Press; 1980. p. 2–15. Chap. 1

    Google Scholar 

  20. Thompson Hancock PE. Thomas Hodgkin. The Fitzpatrick lecture. J R Coll Phys. 1966;2:404–21.

    Google Scholar 

  21. Hancock BW. Early clinical pathologists. 2. Thomas Hodgkin: pathologist, physician, and philanthropist. J Clin Pathol. 1990;43:616–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bonadonna G. Historical review of Hodgkin’s disease. Br J Haematol. 2000;110:504–11.

    Article  PubMed  CAS  Google Scholar 

  23. Sakula A. Dr Thomas Hodgkin and sir Moses Montefiore Bart—the friendship of two remarkable men. J R Soc Med. 1979;72:382–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Notes and queries. Yet another note on the tombstone of Thomas Hodgkin. J Hist Med. 1954;IX:247–8.

    Google Scholar 

  25. Wilks S. Cases of lardaceous disease and some allied affections, with remarks. Guys Hosp Rep. 1856;17:103–32.

    Google Scholar 

  26. Wilks S. Cases with enlargement of the lymphatic glands and spleen (or Hodgkin’s disease), with remarks. Guys Hosp Rep. 1865;11:56–67.

    Google Scholar 

  27. Fox H. Remarks on the presentation of microscopical preparations made from some of the original tissue described by Thomas Hodgkin, 1832. Ann Med Hist. 1926;8:370–4.

    Google Scholar 

  28. Poston RN. Positive Leu-MI immunohistochemistry and diagnosis of the lymphoma cases described by Hodgkin in 1832. Appl Immunohistochem Mol Morphol. 1999;7:6–8.

    Google Scholar 

  29. Strum SB. The natural history, histopathology, staging, and mode of spread of Hodgkin’s disease. Ser Haematol. 1973;6:20–115.

    PubMed  CAS  Google Scholar 

  30. Greenfield WS. Specimens illustrative of the pathology of lymphadenoma and leucocythemia. Trans Path Soc Lond. 1878;XXIX:272–304.

    Google Scholar 

  31. Wilks SIX. Special communications. (A) on diseases of the lymphatic system, including lymphadenoma and leukaemia. Trans Path Soc Lond. 1878;29:269–72.

    Google Scholar 

  32. Langerhans T. Das milgne lymphosarkom (pseudoleukämie). Virchows Arch Pathol Anat. 1872;54:509–37.

    Article  Google Scholar 

  33. Dreschfeld J. Clinical lecture on acute Hodgkin’s (or pseudoleucocythemia). BMJ. 1892;1:893–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sternberg C. Uber eine eigenartige unter dem Bilde der Psuedoleukamie verlaufende Tuberculose des lymphatische Apparates. Ztschr Heilk. 1898;19:21–90.

    Google Scholar 

  35. Reed DM. On the pathological changes in Hodgkin’s disease, with special reference to its relation to tuberculosis. Johns Hopkins Hosp Rep. 1902;10:133–96.

    Google Scholar 

  36. Jackson H, Parker F Jr. Hodgkin’s disease II. Pathology N Engl J Med. 1944;231:35–44.

    Article  Google Scholar 

  37. Peters M. A study of survivals in Hodgkin’s disease treated radiologically. Am J Roentgenol. 1950;63:299–311.

    Google Scholar 

  38. Kinmonth J. Lymphangiography in man: method of outlining lymphatic trunks and operation. Clin Sci. 1952;11:13–20.

    PubMed  CAS  Google Scholar 

  39. Lukes RJ, Butler JJ, Hicks EB. Natural history of Hodgkin’s disease as related to its pathologic picture. Cancer. 1966;19:317–44.

    Article  Google Scholar 

  40. Lukes RJ, Craver LF, Hall TC, Rappaport H, Rubin P. Report of the nomenclature committee. Cancer Res. 1966;26:1311.

    Google Scholar 

  41. Rosenberg S. Report of the committee on the staging of Hodgkin’s disease. Cancer Res. 1966;26:1310.

    Google Scholar 

  42. Glatstein E, Guernsey JM, Rosenberg SA, et al. The value of laparotomy and splenectomy in the staging of Hodgkin’s disease. Cancer. 1969;24:709–18.

    Article  PubMed  CAS  Google Scholar 

  43. Carbone P, Kaplan H, Musshoff K. Report of the committee on the Hodgkin’s disease staging. Cancer Res. 1971;31:1860–1.

    PubMed  CAS  Google Scholar 

  44. Weiss LM, Strickler JG, Warnke RA, et al. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129:86–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein-Barr viral genomes in reed-Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989;320:502–6.

    Article  PubMed  CAS  Google Scholar 

  46. Küppers R, Rajewsky K, Zhao M, et al. Hodgkin disease: Hodgkin and reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A. 1994;91:10962–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Küppers R, Kanzler H, Hansmann ML, Rajewsky K. Single cell analysis of Hodgkin/reed-Sternberg cells. Ann Oncol. 1996;7(Suppl 4):27–30.

    Article  PubMed  Google Scholar 

  48. Jox A, Zander T, Kornacker M, et al. Detection of identical Hodgkin-reed Sternberg cell specific immunoglobulin gene rearrangements in a patient with Hodgkin’s disease of mixed cellularity subtype at primary diagnosis and in relapse two and a half years later. Ann Oncol. 1998;9:283–7.

    Article  PubMed  CAS  Google Scholar 

  49. Pel P. Zur Symptomatologie der sogenannten Pseudo-Leukãmie. Berl klin Wochenschrift. 1885;22:3–7.

    Google Scholar 

  50. Brockbank EM, editor. Dreschfeld memorial volume: containing an account of the life, work, and writings of Julius Dreschfeld, M.D. F.R.C.P. With a series of original articles dedicated to his memory by his colleagues in the University of Manchester and former pupils. Manchester: University Press; 1908. University of Manchester Publication Number XXXV.

    Google Scholar 

  51. Ewing J. Neoplastic diseases: a textbook on tumors. Hodgkin granuloma. Lymphogranuloma. Philadelphia, PA: WB Saunders Company; 1919. p. 352–61.

    Google Scholar 

  52. Stein H. Hodgkin lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: International Agency for Research on Cancer; 2008. p. 322–34.

    Google Scholar 

  53. Warren R, Kinmonth MS. FRCS. Arch Surg. 1963;118:990–1.

    Article  Google Scholar 

  54. Brousset P, Chittal S, Schlaifer D, et al. Detection of Epstein-Barr virus messenger RNA in reed-Sternberg cells of Hodgkin’s disease by in situ hybridization with biotinylated probes on specially processed modified acetone methyl benzoate xylene (ModAMeX) sections. Blood. 1991;77:1781–6.

    PubMed  CAS  Google Scholar 

  55. Küppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9:15–27.

    Article  PubMed  CAS  Google Scholar 

  56. Pusey WA. Cases of sarcoma and Hodgkin’s disease treated by exposure to X-rays—a preliminary report. JAMA. 1902;38:166–96.

    Article  Google Scholar 

  57. Senn N. Therapeutical value of the Röntgen ray in treatment of pseudoleukemia. NY Med J. 1903;77:665–8.

    Google Scholar 

  58. Kaplan H. Hodgkin disease, radiotherapy. 2nd ed. Cambridge, MA: Harvard University Press; 1980. p. 2–15. Chap. 9.

    Google Scholar 

  59. Gilbert R, Babaïaintz L. Notre méthod de roentgenthérapie de la lymphogranulomatose (Hodgkin): résultats, éloignés. Acta Radiol. 1931;12:523–9.

    Article  Google Scholar 

  60. Gilbert R. Radiotherapy in Hodgkin’s disease (malignant granulomatosis): anatomic and clinical foundations; governing principles; results. Am J Roentgenol. 1939;41:198–241.

    Google Scholar 

  61. Craft CB. Results with roentgen ray therapy in Hodgkin’s disease. Bull Staff Meet Univ Minnesota Hosp. 1940;11:391–409.

    Google Scholar 

  62. Cowen DH. Vera Peters and the curability of Hodgkin’s disease. Curr Oncol. 2008;15:206–10.

    Google Scholar 

  63. Easson EC, Russell MH. The cure of Hodgkin’s disease. Brit Med J. 1963;1:1704–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Goodman LS, Wintrobe MM, Dameshek W, et al. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin’s disease lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA. 1946;132:126–32.

    Google Scholar 

  65. Jacobsen L, Spurr CL, Barron ESG, et al. Nitrogen mustard therapy. Studies on the effect of methyl-bis(beta-chloroethyl)amine hydrochloride on neoplastic diseases and allied disorders of the hemopoietic system. JAMA. 1946;132:263–71.

    Article  Google Scholar 

  66. Wilkinson JF, Fletcher J. Effects of B-chlorethylamine hydrochlorides in leukemia, Hodgkin’s disease, and polycythemia vera. Lancet. 1946;i:540–5.

    Google Scholar 

  67. Kaplan HS. Evidence for a tumoricidal dose level in the radiotherapy of Hodgkin’s disease. Cancer Res. 1996;26(part 1):1221–4.

    Google Scholar 

  68. Kaplan HS. The radical radiotherapy of regionally localized Hodgkin’s disease. Radiology. 1962;78:553–61.

    Article  PubMed  CAS  Google Scholar 

  69. Devita VT Jr, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73:881–95.

    Article  PubMed  Google Scholar 

  70. DeVita VT Jr, Simon RM, Hubbard SM, Young RC, Berard CW, Moxley JH 3rd, Frei E 3rd, Carbone PP, Canellos GP. Curability of advanced Hodgkin’s disease with chemotherapy. Long-term follow-up of MOPP-treated patients at the National Cancer Institute. Ann Intern Med. 1980;92:587–95.

    Article  PubMed  Google Scholar 

  71. Bonadonna G, Zucali R, Monfardini S, et al. Combination chemotherapy of Hodgkin’s disease with adriamycin, bleomycin, vinblastine, and imidazole carboxamide versus MOPP. Cancer. 1975;36:252.

    Article  PubMed  CAS  Google Scholar 

  72. Ribatti D. The contribution of Gianni Bonadonna to the history of chemotherapy. Cancer Chemother Pharmacol. 2007;60:309–12.

    Article  PubMed  Google Scholar 

  73. Spitzer G, Dicke K, Zander AR, et al. High-dose chemotherapy with autologous boner marrow transplantation. Cancer. 1984;54:1216–25.

    Article  PubMed  CAS  Google Scholar 

  74. Appelbaum FR, Sullivan KM, Thomas ED, et al. Allogeneic marrow transplantation in the treatment of MOPP-resistant Hodgkin’s disease. J Clin Oncol. 1985;3:1490–4.

    Article  PubMed  CAS  Google Scholar 

  75. Diehl V, Sieber M, Rüffer U, et al. BEACOPP: an intensified chemotherapy regimen in advanced Hodgkin’s disease. The German Hodgkin’s lymphoma study group. Ann Oncol. 1997;8:143–8.

    Article  PubMed  CAS  Google Scholar 

  76. Glatstein E. As good as it gets-training with Henry Kaplaan and Saul Rosenberg during Stanford studies on Hodgkin’s disease and lymphoma. Cancer Biother Radiopharm. 2001;16:269–73.

    Article  PubMed  CAS  Google Scholar 

  77. Rosenberg S, Kaplan HS. Evidence for an orderly progression in the spread of Hodgkin’s disease. Cancer Res. 1966;26(part 1):1225–31.

    PubMed  CAS  Google Scholar 

  78. Krumbar EB, Krumbar HD. The blood and bone marrow in yellow cross (mustard) gas poisoning: changes produced in the marrow of fatal cases. J Med Res. 1919;40:487–508.

    Google Scholar 

  79. Adair FE, Bagg HJ. Experimental and clinical studies on the treatment of cancer by dichloroethylsulfide (mustard gas). Ann Surg. 1931;93:190–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Liebow AA, Waters LL. Milton Charles Winternitz. Yale J Biol Med. 1959;32:143–65.

    PubMed  PubMed Central  Google Scholar 

  81. Infield GB. Disaster at Bari. New York: The Macmillian Co; 1971. p. 1–251.

    Google Scholar 

  82. Gilman A, Philips FS. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science. 1946;103:409–15.

    Article  CAS  Google Scholar 

  83. Kohn KW. Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment—fifteenth Bruce F. Cain memorial award lecture. Cancer Res. 1996;56:5533–46.

    PubMed  CAS  Google Scholar 

  84. Bollag W, Gruneberg E. Tumor inhibitory effects of a new class of cytotoxic agents; methyl ydrazine derivatives. Experientia. 1963;19:130–1.

    Article  PubMed  CAS  Google Scholar 

  85. Pearson OH, Eliel LP. Use of pituitary adrenocorticotropic hormone (ACTH) and cortisone in lymphomas and leukemias. JAMA. 1950;144:1349–53.

    Article  CAS  Google Scholar 

  86. Noble RL, Beer CT, Cutis JH. Role of chance observations in chemotherapy: vinca rosea. Ann N Y Acad Sci. 1958;76:882–94.

    Article  PubMed  CAS  Google Scholar 

  87. DeVita VT Jr. A selective history of the therapy of Hodgkin’s disease. Br J Haematol. 2003;122:718–27.

    Article  PubMed  Google Scholar 

  88. Arseneau JC, Sponzo RW, Levin DL, et al. Nonlymphomatous malignant tumors complicating Hodgkin’s disease. Possible association with intensive therapy. N Engl J Med. 1972;287:1119–22.

    Article  PubMed  CAS  Google Scholar 

  89. DeVita VT, Arseneau JC, Sherins RJ, et al. Intensive chemotherapy for Hodgkin’s disease: long-term complications. Natl Cancer Inst Monogr. 1973;36:447–54.

    PubMed  CAS  Google Scholar 

  90. Rutledge RH. A medical musical friendship: Billroth and Brahms. J Surg Educ. 2007;64(1):57–60.

    Article  PubMed  Google Scholar 

  91. Sunderman TW. Theodor Billroth as musician. Bull Med Libr Assoc. 1937;25:209–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Billroth T, von Winiwarter A. Die allgemeine chirurgische Pathologie und Therapie in einundfunfzig Vorlesungen: Ein Handbuch fur Studirende und Aerzte. Berlin: Druck und Verlag von George Reimer; 1893.

    Google Scholar 

  93. von Dr. Theodor Billroth. Neue Beobachtungen über die feinere structur pathologisch veranderter lymphdrüsen. Virchows Arch Pathol Anat Physiol Klin Med. 1861;21:423–43.

    Article  Google Scholar 

  94. Kundrat H. Ueber lympho-sarkomatosis. Wien klin Wschr. 1893;VI:211–3, and 234–239.

    Google Scholar 

  95. Virchow R. Die Krankhaften Geschwulste, vol. 2. Berlin: Hirschwald; 1863. p. 728–38. (756 pages)

    Google Scholar 

  96. Mallory FB. The principles of pathologic histology. Philadelphia/London: W.B. Saunders Company; 1914. p. 326–34. Tumors, 8. Lymphoblastoma.

    Google Scholar 

  97. http://www.fundinguniverse.com/company-histories/MemorialSloan-Kettering-Cancer-Center.

  98. Lichtman MA. An historical perspective on the development of the cytarabine (7 days) and daunorubicin (3 days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol Dis. 2013;50:119–30.

    Article  PubMed  CAS  Google Scholar 

  99. Oberling C. Les reticulosarcomes et les reticuloendotheliosarcomes de la moelle osseuse (sarcmes d’Ewing). Bull Ass Franç Cancer. 1928;17:259–96.

    Google Scholar 

  100. Roulet F. Das primare Retothelsarcom der lymphknoten. Virch Arch Pathol Anat. 1930;277:15–47.

    Article  Google Scholar 

  101. Brill NE, Baehr G, Rosenthal N. Generalized giant lymph follicle hyperplasia of lymph nodes and spleen. JAMA. 1925;84:668–71.

    Article  Google Scholar 

  102. Symmers D. Giant follicular lymphadenopathy with or without splenomegaly. Arch Pathol. 1938;26:603–47.

    Google Scholar 

  103. Callender GR. Tumors and tumor-like conditions of the lymphocyte, the myelocyte, the erythrocyte, and the reticulum cell. Am J Pathol. 1934;X:443–65.

    Google Scholar 

  104. Gall EA, Mallory TB. Malignant lymphoma: a clinicopathologic survey of 618 cases. Am J Pathol. 1942;18:381–429.

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Rappaport H, Winter W, Hicks E. Follicular lymphoma: a re-evaluation of its position in the scheme of malignant lymphoma, based on a survey of 253 cases. Cancer. 1956;9:792–821.

    Article  PubMed  Google Scholar 

  106. Rappaport H. Tumors of the hematopoietic system, Fasc 8. Washington, DC: Armed Forces Institute of Pathology; 1966.

    Google Scholar 

  107. Gerard-Marchant R, Hamlin I, Lennert K, et al. Classification of non-Hodgkin’s lymphoma. Lancet. 1974;ii:406–8.

    Google Scholar 

  108. Lukes RJ, Collins RD. Immunologic characterization of human malignant lymphomas. Cancer. 1974;34(Suppl 4):1488–503.

    Article  Google Scholar 

  109. The Non-Hodgkin’s Lymphoma Pathologic Classification Project. National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas: summary and description of a working formulation for clinical usage. Cancer. 1982;49:2112–35.

    Article  Google Scholar 

  110. Stansfeld AG, Diebold J, Noel H, et al. Updated Kiel classification for lymphomas. Lancet. 1988;1:292–3.

    Article  PubMed  CAS  Google Scholar 

  111. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the international lymphoma study group. Blood. 1994;84:361–92.

    Google Scholar 

  112. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Glick B, Chang TS, Jaap RG. The bursa of Fabricius and antibody production. Poult Sci. 1956;35:224–5.

    Article  Google Scholar 

  114. Ribatti D, Crivellato E, Vacca A. The contribution of Bruce Glick to the definition of the role played by the bursa of Fabricius in the development of the B cell lineage. Clin Exp Immunol. 2006;145:1–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Warner NL, Szenberg A. Effect of neonatal thymectomy on the immune response in the chicken. Nature. 1962;196:784–5.

    Article  PubMed  CAS  Google Scholar 

  116. Cooper MD, Peterson RD, South MA, Good RA. The functions of the thymus and the bursa system in the chicken. J Exp Med. 1966;123:75–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Miller JFAP. Immunologic function of the thymus. Lancet. 1961;2:748–9.

    Article  PubMed  CAS  Google Scholar 

  118. Roitt IM, Greaves MF, Torrigiani G, et al. The cellular basis of the immunological response. Lancet. 1969;2:367–71.

    Article  PubMed  CAS  Google Scholar 

  119. Coombs RRA, Gurner BW, Wilson AB, et al. Rosette formation between human lymphocytes and sheep red cells not involving immunoglobulin receptors. Int Arch Allerg Appl Immunol. 1970;39:658–63.

    Article  CAS  Google Scholar 

  120. Coombs RRA, Feinstein A, Wilson AB. Immunoglobulin determinants on the surface of human lymphocytes. Lancet. 1969;ii:1157–60.

    Article  Google Scholar 

  121. Wilson JD, Nossal GJV. Identification of human T and B lymphocytes in normal peripheral blood and in chronic lymphocytic leukaemia. Lancet. 1971;ii:788–91.

    Article  Google Scholar 

  122. Jondal M, Holm G, Wigzell H. Surface markers on human T and B lymphocytes. J Exp Med. 1972;136:207–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Klein E, Klein G, Nadkarni JS, et al. Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines. Cancer Res. 1968;28:1300–10.

    PubMed  CAS  Google Scholar 

  124. Preud’homme JL, Klein M, Veroust P, Seligmann M. Immunoglobulines monoclonales de membrane dans les leucémies lymphoides chroniques. Rev Eur Étud Clin et Biol. 1971;16:1025–31.

    Google Scholar 

  125. Sinkovics JG, Shirato E, Martin RG, Cabiness JR, White EC. Chondrosarcoma. Immune reactions of a patient to autologous tumor. Cancer. 1971;27:782–93.

    Article  PubMed  CAS  Google Scholar 

  126. Sinkovics JG. Cytolytic immune lymphocytes. Passau: Schenk Verlag; 2008. p. 1–383.

    Google Scholar 

  127. Sinkovics JG. Malignant lymphoma arising from natural killer cells; report of the first case in 1970 and newer developments in the FASL-FASR system. Acta Micrbiol Immunol Hung. 1997;44:295–307.

    CAS  Google Scholar 

  128. Herberman RB, Ortaldo JR. Natural killer cells: their roles in defenses against disease. Science. 1981;214:24–30.

    Article  PubMed  CAS  Google Scholar 

  129. Arnold A, Cossman J, Bakhshi A, et al. Immunoglobulin-gene rearrangements as unique clonal markers in human lymphoid neoplasms. N Engl J Med. 1983;309:1593–9.

    Article  PubMed  CAS  Google Scholar 

  130. Aisenberg AC, Krontiris TG, Mak TW, Wilkes BM. Rearrangement of the gene for the beta chain of the T-cell receptor in T-cell chronic lymphocytic leukemia and related disorders. N Engl J Med. 1985;313:529–33.

    Article  PubMed  CAS  Google Scholar 

  131. Stein H, Kaiserling E, Lennert K. Evidence for B-cell origin of reticulum cell sarcoma. Virchows Arch A Pathol Anat Histol. 1974;364:51–67.

    Article  PubMed  CAS  Google Scholar 

  132. Non-Hodgkin’s Lymphoma Classification Project. A clinical evaluation of the international lymphoma study group classification of non-Hodgkin’s lymphoma. Blood. 1997;89:3909–18.

    Google Scholar 

  133. Fulwyler MT, Glascock RB, Hiebert RD, Johnson NM. Device which separates minute particles according to electronically sensed volume. Rev Sci Instrum. 1969;40:42–8.

    Article  PubMed  CAS  Google Scholar 

  134. Cram LS, Arndt-Jovin D. Mack Jett Fulwyler, pioneer of flow cytometry and flow sorting (1936–2001). Cytometry A. 2005;67:53–60.

    Article  PubMed  Google Scholar 

  135. Bonner WA, Hulett HR, Sweet RG, Herzenberg LA. Fluorescence activated cell sorting. Rev Sci Instrum. 1972;43:404–9.

    Article  PubMed  CAS  Google Scholar 

  136. Herzenberg LA, Parks DE, Sahaf B, et al. The historyand future of fluorescence activated cell sorter and flow cytometry; a view from Stanford. Clin Chem. 2002;48:1819–27.

    PubMed  CAS  Google Scholar 

  137. Staudt LM, Brown PO. Genomic views of the immune system. Annu Rev Immunol. 2000;18:829–59.

    Article  PubMed  CAS  Google Scholar 

  138. Alizadeh AA, Eisen MB, Davis RE, et al. Identification of molecularly and clinically distinct types diffuse large B-cell lymphoma by gene expression profiling. Nature. 2000;403:503–11.

    Article  PubMed  CAS  Google Scholar 

  139. Lenoir T, Giannella E. The emergence and diffusion of DNA microarray technology. J Biomed Discov Collab. 2006;1:11–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Bartlett, J. M. S.; Stirling, D. (2003). “A short history of the polymerase chain reaction”. PCR Protocols. Methods in Molecular Biology 226 (2nd ed.). pp. 3–6.

    Google Scholar 

  141. https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/mullis-lecture.html.

  142. Geiges M, Kempf W, Burg G. Cutaneous lymphoma—historical aspects. In: Burg G, Kempf W, editors. Cutaneous lymphomas. Boca Raton: Taylor & Francis; 2005. p. 1–6.

    Google Scholar 

  143. Fraser JF. Mycosis fungoides: its relation to leukemia and lymphosarcoma. Arch Dermatol Syphilol. 1925;12:814–28.

    Article  Google Scholar 

  144. Sézary A, Bouvrain Y. Erythrodermie avec présence de cellules monstrouse dans le derme et le sang circulant. Bull Soc Franç Derm Syph. 1938;45:254–60.

    Google Scholar 

  145. Brouet J-C, Flandrin G, Seligmann M. Indication of the thymus-derived nature of the proliferating cells in six patients with Sézary syndrome. N Engl J Med. 1973;289:341–4.

    Article  PubMed  CAS  Google Scholar 

  146. Lutzner M, Edelson R, Schein P, Green I, Kirkpatrick C, Ahmed A. Cutaneous T-cell lymphomas: Sézary syndrome, mycosis fungoides, and related disorders. Ann Intern Med. 1975;83:534–52.

    Article  PubMed  CAS  Google Scholar 

  147. Schein PS, Chabner BA, Canellos GP, et al. Potential for prolonged disease-free survival following combination chemotherapy of non-Hodgkin’s lymphoma. Blood. 1974;43:181–9.

    PubMed  CAS  Google Scholar 

  148. Forero A, LoBuglio AF. History of antibody therapy for non-Hodgkin’s lymphoma. Semin Oncol. 2003;30:1–5.

    Article  PubMed  CAS  Google Scholar 

  149. Morrison SL, Johnson MJ, Herzenberg LA, et al. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984;81:6851–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Reff ME, Braslawsky G. Future of monoclonal antibodies in the treatment of hematological malignancies. Cancer Control. 2002;9:152–66.

    Article  PubMed  Google Scholar 

  151. Reff ME. The discovery of rituxan. In: Smith CT, O’Donnell JT, editors. New drug discovery and development. 2nd ed. New York, NY: Informa Healthcare; 2006. p. 565–84.

    Google Scholar 

  152. Burkitt DP. A sarcoma involving the jaws in African children. Br J Surg. 1958;46:218–23.

    Article  PubMed  CAS  Google Scholar 

  153. O’Conor GT, Davies JNP. Malignant tumors in African children. With special reference to malignant lymphoma. J Pediatr. 1960;56:526–35.

    Article  PubMed  Google Scholar 

  154. Tselis A. The history of Epstein-Barr virus. In: Tselis A, Jenson HB, editors. Epstein-Barr virus. New York: Taylor & Francis; 2006. p. 1–19.

    Chapter  Google Scholar 

  155. Burkitt D. A lymphoma syndrome in African children. Lecture delivered at the Royal College of Surgeons of England on may 24th, 1961. Ann R Coll Surg Engl. 1962;30:211–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Epstein MA, Achong BG. Barr. Virus particles in cultured lymphoblast from Burkitt’s lymphoma. Lancet. 1964;1:702–3.

    Article  PubMed  CAS  Google Scholar 

  157. Story JA, Kritchevsky D. Denis Parsons Burkitt (1911–1993). J Nutr. 1994;124:1551–4.

    Article  PubMed  CAS  Google Scholar 

  158. Manolov G, Manòlova Y. Marker band on one chromosome 14 from Burkitt lymphoma. Nature. 1972;237:33–4.

    Article  PubMed  CAS  Google Scholar 

  159. Zech L, Haglund V, Nilsson K, Klein G. Characteristic chromosome abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer. 1976;17:47–56.

    Article  PubMed  CAS  Google Scholar 

  160. Kirsch I, Morton C, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982;79:7837–41.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Dalla-Favera R, Bregni M, Erikson J, et al. Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1982;79:7824–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Bernheim A, Berger R, Lenoir G. Cytogenetic studies on African Burkitt’s lymphoma cell lines t(8;14), t(2;8) and t(8;22) translocations. Cancer Genet Cytogenet. 1981;3:307–15.

    Article  PubMed  CAS  Google Scholar 

  163. Tsujimoto Y, Finger LR, Yunis J, et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226:1097–9.

    Article  PubMed  CAS  Google Scholar 

  164. Hockenbery D, Nuñez G, Milliman C, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348:334–6.

    Article  PubMed  CAS  Google Scholar 

  165. Rosenberg CL, Wong E, Petty EM, et al. PRAD1, a candidate BCL1 oncogene: mapping and expression in centrocytic lymphoma. Proc Natl Acad Sci U S A. 1991;88:9638–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Offit K, Lo Coco F, Louie DC, et al. Rearrangement of the bcl-6 gene as a prognostic marker in diffuse large-cell lymphoma. N Engl J Med. 1994;331:74–80.

    Article  PubMed  CAS  Google Scholar 

  167. Reis MD, Griesser H, Mak TW. T cell receptor and immunoglobulin gene rearrangements in lymphoproliferative disorders. Adv Cancer Res. 1989;52:45–80.

    Article  PubMed  CAS  Google Scholar 

  168. Oettgen HF, Burkitt D, Burchenal JH. Malignant lymphoma involving the jaw in African children: treatment with methotrexate. Cancer. 1963;16:616–23.

    Article  PubMed  CAS  Google Scholar 

  169. Burkitt D. Long-term remissions following one and two dose chemotherapy for African lymphoma. Cancer. 1967;20:756–9.

    Article  PubMed  CAS  Google Scholar 

  170. Li MC, Hertz R, Spencer DB. Effect of methotrexate therapy upon choriocarcinoma and chorioadenoma. Proc Soc Exp Biol Med. 1956;93:361–6.

    Article  PubMed  Google Scholar 

  171. Gallo RC. History of the discoveries of the first human retroviruses; HTLV-1 and HTLV-2. Oncogene. 2005;24:5926–30.

    Article  PubMed  CAS  Google Scholar 

  172. Mier JW, Gallo RC. Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned medium. Proc Natl Acad Sci U S A. 1980;77:6134–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Poiesz BJ, Ruscetti FW, Gazdar AF, et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T cell lymphoma. Proc Natl Acad Sci U S A. 1980;77:7415–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Gallo RC. The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology. 2005;2:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Uchiyama T, Yodoi J, Sagawa K, Takatusi K, Uchino H. Adult T cell leukemia. Clinical and hematologic features of 16 cases. Blood. 1977;50:481–92.

    PubMed  CAS  Google Scholar 

  176. Takatsuki K. Discovery of adult T-cell leukemia. Retrovirology. 2005;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Hinuma Y, Nagata K, Hanaoka M, et al. Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci U S A. 1981;78:6476–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Seiki M, Hattori S, Yoshida M. Human adult T-cell leukemia virus: molecular cloning of the provirus DNA and the unique terminal structure. Proc Natl Acad Sci U S A. 1982;79:6899–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Yoshida M, Miyoshi I, Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci U S A. 1982;79:2030–5.

    Article  Google Scholar 

  180. Yoshida M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene. 2005;24:5931–7.

    Article  PubMed  CAS  Google Scholar 

  181. Boveri T. Concerning the origin of malignant tumours. J Cell Sci. 2008;121(Suppl 1):1–84.

    Article  PubMed  Google Scholar 

  182. Balderman S, Lichtman MA. A history of the discovery of random X chromosome inactivation in the human female and its significance. Rambam Maimonides Med J. 2011;2:e0058.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Rous P. Transmission of a malignant new growth by means of a cell-free filtrate. JAMA. 1911;56:198.

    Google Scholar 

  184. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66:1191–308.

    Article  PubMed  CAS  Google Scholar 

  185. Warren JR, Marshall BJ. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983;i:1273–5.

    Google Scholar 

  186. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;i:1311–5.

    Article  Google Scholar 

  187. Freedberg AS, Baron LE. The presence of spirochetes in the gastric mucosa. Am J Dig Dis. 1940;7:443–5.

    Article  Google Scholar 

  188. Steer HW, Colin-Jones DG. Mucosal changes in gastric ulceration and their response to carbenoxolone sodium. Gut. 1975;16:590–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Parsonnet J, Friedman ED, Vandersteen DP, Chang Y, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991;325:1127–31.

    Article  PubMed  CAS  Google Scholar 

  190. Wyatt JI, Rathbone BJ. Immune response of the gastric mucosa to Campylobacter pylori. Scand J Gastroenterol. 1988;23:44–9.

    Article  Google Scholar 

  191. Stolte M, Eidt S. Lymphoid follicles in the antral mucosa: immune response to Campylobacter pylori. J Clin Pathol. 1989;42:1269–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Wotherspoon AC, Doglioni C, Diss TC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342:575–7.

    Article  PubMed  CAS  Google Scholar 

  193. Isaacson P, Wright DH. Extranodal malignant lymphoma arising from mucosa-associated lymphoid tissue. Cancer. 1983;53:2512–24.

    Google Scholar 

  194. Lichtman MA. A bacterial cause of cancer: an historical essay. Oncologist 2017;22:542–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marshall A. Lichtman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Lichtman, M.A. (2018). Historical Landmarks in an Understanding of the Lymphomas. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics