Skip to main content

Shark-Inspired Target Approach Strategy for Foraging with Visual Clues

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10454))

Included in the following conference series:

Abstract

Searching is one of the key activities to fulfill any foraging task. When working with robots, most searching strategies depend on image processing, which is one of the most time-consuming processes. In this work, white shark hunting behaviors inspired the proposed strategy for a team of foraging robots to search and approach the objects. Based on current perceptions, a robot can speed up the foraging process by switching between its sensors to approach its target, that is, by depending less on image processing. On the other hand, the visual clues or targets in the environment have different shapes and colors to indicate which task is available. Such targets are provided by a set of landmarks that change their color according to their availability. In particular, we can manipulate the delays to show a new available task in these landmarks. Each robot makes decisions about which type of target to search based on its experiences. Robots can double-check when they identify unclear images, which are also included in the image database. The proposed strategy for search and approach surpassed the hardware limitations allowing robot navigation with little visual information. A small improvement in the foraging mechanism allowed robots to achieve faster adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. California department of fish and wildlife: white shark information. https://www.wildlife.ca.gov/Conservation/Marine/White-Shark. Accessed 11 Mar 2016

  2. Sharkopedia: interview to Dr. Gregory Skomal. http://sharkopedia.discovery.com/shark-topics/feeding-hunting-diet/#great-white-hunting-tactics-an-interview-with-greg-skomal. Accessed 11 Mar 2016

  3. Tricas, T., McCosker, J.E.: Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Proc. Calif. Acad. Sci. 43(4), 221–238 (1982)

    Google Scholar 

  4. Ennesser, F., Medioni, G.: Finding Waldo, or focus attention using local color information. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 805–809 (1995). doi:10.1109/34.400571

    Article  Google Scholar 

  5. Frintrop, S.: A visual attention system for object detection and goal-directed search. Dissertation, Rheinische Friedrich-Wilhelms Universitat Bonn, doi:10.1007/11682110(2006)

  6. Baltes, J., Anderson, J.: Intelligent Global Vision for Teams of Mobile Robots. INTECH Open Access Publisher (2007). doi:10.5772/4773

  7. Anderson, J., Baltes, J.: Doraemon user manual. http://robocup-video.sourceforge.net. Accessed 11 Mar 2016

  8. Cliff, D., Husbands, P., Harvey, I.: Evolving visually guided robots. In: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, pp. 374–383 (1993). doi:10.1.1.147.1548

  9. Green, W.E., Oh, P.Y., Barrows, G.: Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments. In: Proceedings of the International Conference on Robotics and Automation, pp. 2347–2352 (2004). doi:10.1109/ROBOT.2004.1307412

  10. Swain, M.J., Ballard, D.H.: Indexing via color histograms. In: Proceedings of the 3rd International Conference on Computer Vision (1990). doi:10.1109/ICCV.1990.139558

  11. Montinjano, E.M.: Distributed consensus in multi-robot systems with visual perception. Ph.d. thesis, Universidad de Zaragoza (2012)

    Google Scholar 

  12. Pini, G., Brutschy, A., Frison, M., et al.: Task partitioning in swarms of robots: an adaptive method for strategy selection. Swarm Intell. 5(3–4), 283–304 (2011). doi:10.1007/s11721-011-0060-1

    Article  Google Scholar 

  13. Brutschy, A., Pini, G., Baiboun, N., et al.: The IRIDIA TAM: a device for task abstraction for the e-puck robot. Technical report, TR/IRIDIA/2010-015, IRIDIA. Université Libre de Bruxelles, Brussels, Belgium (2010)

    Google Scholar 

  14. Sugawara, K., Sano, M.: Cooperative acceleration of task performance: foraging behavior of interacting multi-robots system. Phys. D Nonlinear Phenom. 100(3), 343–354 (1997). doi:10.1016/S0167-2789(96)00195-9

    Article  MATH  Google Scholar 

  15. Ye, Y., Tsotsos, J.K.: Where to look next in 3D object search. In: Proceedings of the International Symposium on Computer Vision (1995). doi:10.1109/ISCV.1995.477057

  16. Sjö, K., Glvez, D., Paul, C., et al.: Object search and localization for an indoor mobile robot. J. Comput. Inf. Tech. 17(1), 67–80 (2009). doi:10.2498/cit.1001182

    Article  Google Scholar 

  17. Gozanlez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  18. Randen, T., Husoy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999). doi:10.1109/34.761261

    Article  Google Scholar 

  19. Sjriek, A., Ranjbar-Sahraei, B., May, S., et al.: An experimental framework for exploiting vision in swarm robotics. In: Proceedings of the European Conference on Artificial Life, vol. 83, pp. 775–782 (2013). doi:10.7551/978-0-262-31709-2-ch111

  20. Mondada, F., Bonani, M., et al.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, no. 4, pp. 59–65 (2009). doi:10.1.1.180.8110

  21. Montes-Gonzalez, F., Aldana-Franco, F.: The evolution of signal communication for the e-puck robot In: Proceedings of the 10th Mexican International Conference on Artificial Intelligence, pp. 466–477 (2011). doi:10.1007/978-3-642-25324-9_40

  22. Michel, O., Rohrer, F., Heiniger, N., et al.: Cyberbotics’ Robot Curriculum. Wikibooks (2010). Edited from 18th January

    Google Scholar 

  23. Brutschy, A., Garattoni, L., et al.: The TAM: abstracting complex tasks in swarm robotics research. Swarm Intell. 9(1), 1–22 (2015). doi:10.1007/s11721-014-0102-6

    Article  Google Scholar 

Download references

Acknowledgments

We thank to CNPq, CAPES, and Fapemig for their financial support. JMN also is grateful with the OEA for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan M. Nogales , Mauricio Cunha Escarpinati or Gina Maira Barbosa de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nogales, J.M., Escarpinati, M.C., de Oliveira, G.M.B. (2017). Shark-Inspired Target Approach Strategy for Foraging with Visual Clues. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64107-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64106-5

  • Online ISBN: 978-3-319-64107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics