Skip to main content

Requirement of Whole-Genome Sequencing

  • Chapter
  • First Online:
The Common Bean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Crop plants that sustain modern civilizations, including common bean (Phaseolus vulgaris), were domesticated and improved by thousands of years of human selection, which transformed wild ancestors into high-yielding domesticated descendants. Understanding how the genome of crop species has been shaped through time, with and without human intervention, is a fascinating field of research. In addition, defining the loci and associated polymorphisms behind the emergence of domestication and improvement traits in P. vulgaris is of major importance. Uncovering intra- and inter-species introgression events that could indicate transferred genes, which together with domestication protein-coding and non-coding genes that have given rise to domestication and adaptive traits are required for future improvement strategies. Such strategies, in our view, will depend to a significant extent on crop re-wilding, given the local adaptations undergone by their wild relatives and climate change. Essential tools for reaching these goals have recently been developed, such as the complete genome sequences (~600 Mb) of a Mesoamerican and an Andean accession, as well as a large gene expression atlas. Further, there are significant re-sequencing efforts for both wild and domesticated genotypes, which will play a major role in the future of this crop. Altogether, this information will allow the genetic dissection of the characters involved in the domestication and adaptation of the crop and their further implementation in breeding strategies faced with an ever-expanding human population and unpredictable environmental challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N et al (2013) Hybridization and speciation. J Evol Biol 26:229–246

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:S44–S59

    Article  Google Scholar 

  • Andueza-Noh RH, Serrano Serrano ML, Chacón Sánchez MI, Sánchez-del Pino I, Camacho-Pérez L, Coello-Coello J, Mijangos Cortes J, Debouck D, Martínez-Castillo J (2013) Multiple domestications of the Mesoamerican gene pool of lima bean (Phaseolus lunatus L.): evidence from chloroplast DNA sequences. Genet Resour Crop Evol 60:1069–1086

    Article  CAS  Google Scholar 

  • Arumuganthan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  Google Scholar 

  • Beebe S, Toro O, González AV, Chacón MI, Debouck DG (1997) Wild-weed-crop complexes of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding. Genet Resour Crop Evol 44:73–91

    Article  Google Scholar 

  • Beebe S, Rao IM, Blair M, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S, Minio A, Rau D, Rodriguez M, Panziera A, Venturini L, Attene G, Albertini E, Jackson SA, Nanni L, Fernie AR, Nikoloski Z, Bertorelle G, Delledonne M, Papa R (2014) Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. Plant Cell 26:1901–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot (London) 76:113–116

    Article  CAS  Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS, Logozzo G, Stougaard J, McClean P, Attene G, Papa R (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci USA 109:E788–E796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G, Attene G, Nanni L, Papa R (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2002) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Soler A, Cortés AJ (2012a) Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE 7:e49488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Pantoja W, Carmenza Muñoz L (2012b) First use of microsatellite markers in a large collection of cultivated and wild accessions of tepary bean (Phaseolus acutifolius A. Gray). Theor Appl Genet 125:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart RS, Setter TL, Gleadow RM, Kulakow P, Ferguson ME, Rounsley S, Rokhsar DS (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34:562–570

    Google Scholar 

  • Butare L, Rao I, Lepoivre P, Polania J, Cajiao C, Cuasquer J, Beebe S (2011) New genetic sources of resistance in the genus Phaseolus to individual and combined aluminium toxicity and progressive soil drying stresses. Euphytica 181:385–404

    Article  CAS  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacón MI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Article  Google Scholar 

  • Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 11(1):436

    Google Scholar 

  • Cortés AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827–845

    Article  PubMed  Google Scholar 

  • Cortés AJ, Monserrate FA, Ramírez-Villegas J, Madriñán S, Blair MW (2013) Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L.). PLoS ONE 8:e62898

    Article  PubMed  PubMed Central  Google Scholar 

  • Counterman BA, Noor MA (2006) Multilocus test for introgression between the cactophilic species Drosophila mojavensis and Drosophila arizonae. Am Nat 168:682–696

    Article  PubMed  Google Scholar 

  • Debouck DG, Toro O, Paredes OM, Johnson WC, Gepts P (1993) Genetic diversity and ecological distribution of Phaseolus vulgaris in northwestern South America. Econ Bot 47:408–423

    Article  Google Scholar 

  • de la Cruz EP, Gepts P, Colunga García-Marín P, Zizumbo Villareal D (2005) Spatial distribution of genetic diversity in wild populations of Phaseolus vulgaris L. from Guanajuato and Michoacán, México. Genet Res Crop Evol 52:589–599

    Article  Google Scholar 

  • Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791

    Article  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Camino C, Annamalai P, Sanchez F, Kachroo A, Ghabrial SA (2011) An effective virus- based gene silencing method for functional genomics studies in common bean. Plant Methods 7:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowling T, Secor CL (1997) The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst 28:593–619

    Article  Google Scholar 

  • Escalante AM, Coello G, Eguiarte LE, Piñero D (1994) Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris. Am J Bot 81:1096–1103

    Article  Google Scholar 

  • Félix DT, Coello-Coello J, Martínez-Castillo J (2014) Wild to crop introgression and genetic diversity in Lima bean (Phaseolus lunatus L.) in traditional Mayan milpas from Mexico. Conserv Genet 15:1315–1328

    Article  Google Scholar 

  • Ferreira J, Souza Carneiro J, Teixeira A, Lanes F, Cecon P, Borém A (2007) Gene flow in common bean (Phaseolus vulgaris L.). Euphytica 153:165–170

    Article  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler IV, ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 54:357–374

    Google Scholar 

  • Garzon LN, Blair M (2014) Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean. Crop J 2:183–194

    Article  Google Scholar 

  • Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44

    Google Scholar 

  • Gepts P (2014) The contribution of genetic and genomic approaches to plant domestication studies. Curr Opin Plant Biol 18:51–59

    Article  PubMed  Google Scholar 

  • Gepts P, Papa, R (2002) Evolution during domestication. In: Encyclopedia of life sciences. Nature Publishing Group, London. doi:10.1038/npg.els.0003071

  • Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PA, Brondani RP (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 x Jalo EEP558. Genet Mol Res 6:691–706

    CAS  PubMed  Google Scholar 

  • Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG, Tar’an B, Bett KE (2016) Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 17:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Haghighi KR, Ascher PD (1988) Fertile, intermediate hybrids between Phaseolus vulgaris and P. acutifolius from congruity backcrossing. Sex Plant Reprod 1:51–58

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hannah MA, Krämer KM, Geffroy V, Kopka J, Blair MW, Erban A, Vallejos CE, Heyer AG, Sanders FE, Millner PA, Pilbeam DJ (2007) Hybrid weakness controlled by the dosage-dependent lethal (DL) gene system in common bean (Phaseolus vulgaris) is caused by a shoot-derived inhibitory signal leading to salicylic acid-associated root death. New Phytol 176:537–549

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF (2005) Contributions of domesticated plant studies to our understanding of plant evolution. Ann Bot 96:953–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, Greenberg AJ, Hudson RR, Wu CI, Shi S (2011) Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7:e1002100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kami J, Velásquez VB, Debouck DG, Gepts P (1995) Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci USA 92:1101–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan L, Lynch TF (1999) Phaseolus (Fabaceae) in archaeology: AMS radiocarbon dates and their significance for pre-Colombian agriculture. Econ Bot 53:261–272

    Article  Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Article  Google Scholar 

  • Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, Covington MF, Devisetty UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady SM, Pauly M, Weigel D, Usadel B, Fernie AR, Peng J, Sinha NR, Maloof JN (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci USA 110:E2655–E2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koinange EMK, Gepts P (1992) Hybrid weakness in wild Phaseolus vulgaris L. J Hered 83:135–139

    Article  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  CAS  PubMed  Google Scholar 

  • Kwak M, Toro O, Debouck D, Gepts P (2012) Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris L.). Ann Bot 110:1573–1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwapata K, Nguyen T, Sticklen M (2012) Genetic transformation of common bean (Phaseolus vulgaris L.) with the GUS color marker, the BAR herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. Int J Agron 198960. doi:10.1155/2012/198960

  • Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M, Barton L, Climer Vigueira C, Denham T, Dobney K, Doust AN, Gepts P, Gilbert MT, Gremillion KJ, Lucas L, Lukens L, Marshall FB, Olsen KM, Pires JC, Richerson PJ, Rubio de Casas R, Sanjur OI, Thomas MG, Fuller DQ (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci USA 111:6139–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenser T, Theißen G (2013) Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci 18:704–714

    Article  CAS  PubMed  Google Scholar 

  • Llaca V, Delgado Salinas A, Gepts P (1994) Chloroplast DNA as an evolutionary marker in the Phaseolus vulgaris complex. Theor Appl Genet 88:646–652

    Article  CAS  PubMed  Google Scholar 

  • López Soto JL, Ruiz Corral JA, Sánchez González J, Lépiz Ildefonso R (2005) Climatic adaptation of 25 wild bean species (Phaseolus spp.) in México. Rev Fitotecnia Mexicana 28:221–230

    Google Scholar 

  • Luebert F, Weigend M (2014) Phylogenetic insights into Andean plant diversification. Front Ecol Evol 2:27

    Article  Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446:279–283

    Article  CAS  PubMed  Google Scholar 

  • Mamidi S, Rossi M, Annam D, Moghaddam S, Lee R, Papa R, McClean P (2011) Investigation of the domestication of common bean (Phaseolus vulgaris) using multilocus sequence data. Funct Plant Biol 38:953–967

    Article  CAS  Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal J, Gepts P, Delgado-Valerio P, Colunga-García Marín P (2006) Structure and genetic diversity of wild populations of Lima bean (Phaseolus lunatus L.) from the Yucatan Peninsula, Mexico. Crop Sci 46:1071–1080

    Article  Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal J, Gepts P, Colunga-García Marín P (2007) Gene flow and genetic structure in the wild–weedy–domesticated complex of Phaseolus lunatus L. in its Mesoamerican center of domestication and diversity. Crop Sci 47:58–66

    Article  Google Scholar 

  • Martínez-Castillo J, Camacho-Pérez L, Villanueva-Viramontes S, Andueza-Noh RH, Chacón-Sánchez MI (2014) Genetic structure within the Mesoamerican gene pool of wild Phaseolus lunatus (Fabaceae) from Mexico as revealed by microsatellite markers: implications for conservation and the domestication of the species. Am J Bot 101:851–864

    Article  PubMed  Google Scholar 

  • McClean P, Gepts P, Kami J (2004) Genomics and genetic diversity in common bean. In: Wilson RF, Stalker HT, Brummer EC (eds) Legume crop genomics. AOCS Press, Champaign, IL, pp 60–82

    Google Scholar 

  • Mensack MM, Fitzgerald VK, Ryan EP, Lewis MR, Thompson HJ, Brick MA (2010) Evaluation of diversity among common beans (Phaseolus vulgaris L.) from two centers of domestication using ‘omics’ technologies. BMC Genom 11:686

    Article  CAS  Google Scholar 

  • Mercado-Ruaro P, Delgado-Salinas A (1998) Karyotypic studies on species of Phaseolus (Fabaceae: Phaseolinae). Am J Bot 85:1–9

    Article  CAS  PubMed  Google Scholar 

  • Micheletto S, Rodriguez-Uribe L, Hernandez R, Richins RD, Curry J, O’Connell MA (2007) Comparative transcript profiling in roots of Phaseolus acutifolius and P. vulgaris under water deficit stress. Plant Sci 173:510–520

    Article  CAS  Google Scholar 

  • Miedes E, Vanholme R, Boerjan W, Molina A (2014) The role of the secondary cell wall in plant resistance to pathogens. Front Plant Sci 5:358

    Article  PubMed  PubMed Central  Google Scholar 

  • Mina-Vargas AM, McKeown PC, Flanagan NS, Debouck DG, Kilian A, Hodkinson TR, Spillane C (2016) Origin of year-long bean (Phaseolus dumosus Macfady, Fabaceae) from reticulated hybridization events between multiple Phaseolus species. Ann Bot 118:957–969

    Article  PubMed Central  Google Scholar 

  • Morell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    Google Scholar 

  • Muñoz LC, Blair MW, Duque MC, Tohme J, Roca W (2004) Introgression in common bean × tepary bean interspecific congruity-backcross lines as measured by AFLP markers. Crop Sci 44:637–645

    Article  Google Scholar 

  • O’Rourke JA, Iniguez LP, Bucciarelli B, Roessler J, Schmutz J, McClean PE, Jackson SA, Hernandez G, Graham MA, Stupar RM, Vance CP (2013) A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar. Front Plant Sci 4:210

    PubMed  PubMed Central  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Acosta-Gallegos JA, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Pastorini J, Zaramody A, Curtis DJ, Nievergelt CM, Mundy NI (2009) Genetic analysis of hybridization and introgression between wild mongoose and brown lemurs. BMC Evol Biol 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Piperno DR, Dillehay TD (2008) Starch grains on human teeth reveal early broad crop diet in northern Peru. Proc Natl Acad Sci USA 105:19622–19627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porch TG, Blair MW, Lariguet P, Galeano C, Pankhurst CE, Broughton WJ (2009) Generation of a mutant population for TILLING common bean genotype BAT93. J Am HortSoc 134:348–355

    Google Scholar 

  • Porch TG, Beaver JS, Debouck DG, Jackson SA, Kelly JD, Dempewolf H (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3:433–461

    Article  Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  CAS  PubMed  Google Scholar 

  • Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez S, Ordaz-Ortiz JJ, Aguilar OM, Vianello-Brondani RP, Santalla M, Delaye-Arredondo L, Gabaldón T, Gepts P, Winkler R, Guigó R, Delgado-Salinas A, Herrera-Estrella A (2017) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 18:60

    Google Scholar 

  • Richter M, Diertl KH, Emck P, Peters T, Beck E (2009) Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landscape Online 12:1–35

    Google Scholar 

  • Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MM, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  Google Scholar 

  • Schneider JV, Schulte K, Aguilar JF, Huertas ML (2011) Molecular evidence for hybridization and introgression in the neotropical coastal desert-endemic Palaua (Malveae, Malvaceae). Mol Phylogenet Evol 60:373–384

    Article  PubMed  Google Scholar 

  • Spataro G, Tiranti B, Arcaleni P, Bellucci E, Attene G, Papa R, Spagnoletti Zeuli P, Negri V (2011) Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theor Appl Genet 122:1281–1291

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner R, Briskine R, Schaefer R, Hufford MB, Ross-Ibarra J, Myers CL, Tiffin P, Springer NM (2012) Reshaping of the maize transcriptome by domestication. Proc Natl Acad Sci USA 109:11878–11883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche AE, Erb I, Câmara F, Prieto-Barja P, Corvelo A, Sanseverino W, Westergaard G, Dohm JC, Pappas GJ Jr, Saburido-Alvarez S, Kedra D, Gonzalez I, Cozzuto L, Gómez-Garrido J, Aguilar-Morón MA, Andreu N, Aguilar OM, Garcia-Mas J, Zehnsdorf M, Vázquez MP, Delgado-Salinas A, Delaye L, Lowy E, Mentaberry A, Vianello-Brondani RP, García JL, Alioto T, Sánchez F, Himmelbauer H, Santalla M, Notredame C, Gabaldón T, Herrera-Estrella A, Guigó R (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijayan P, Parkin IA, Karcz SR, McGowan K, Vijayan K, Vandenberg A, Bett KE (2011) Capturing cold-stress-related sequence diversity from a wild relative of common bean (Phaseolus angustissimus). Genome 54:620–628

    Article  CAS  PubMed  Google Scholar 

  • Weissmann S, Feldman M, Gressel J (2005) Sequence evidence for sporadic intergeneric DNA introgression from wheat into a wild Aegilops species. Mol Biol Evol 22:2055–2062

    Article  CAS  PubMed  Google Scholar 

  • Wells WC, Isom WH, Waines JG (1988) Outcrossing rates of six common bean lines. Crop Sci 28:177–178

    Article  Google Scholar 

  • Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. Am Nat 167:794–807

    Article  PubMed  Google Scholar 

  • Worthington M, Soleri D, Gepts P (2012) Genetic composition and spatial distribution of farmer-managed Phaseolus bean plantings: an example from a village in Oaxaca, Mexico. Crop Sci 52:1721–1735

    Article  Google Scholar 

  • Yoo MJ, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet 10:e1004073

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuste-Lisbona FJ, Santalla M, Capel C, García-Alcázar M, La De, Fuente M, Capel J, De Ron AM, Lozano R (2012) Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits. BMC Plant Biol 12:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Zizumbo-Villarreal D, Colunga-García Marín P, Payro de la Cruz E, Delgado-Valerio P, Gepts P (2005) Population structure and evolutionary dynamics of wild-weedy-domesticated. Crop Sci 45:1073–1083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Herrera-Estrella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rendón-Anaya, M., Herrera-Estrella, A. (2017). Requirement of Whole-Genome Sequencing. In: Pérez de la Vega, M., Santalla, M., Marsolais, F. (eds) The Common Bean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-63526-2_5

Download citation

Publish with us

Policies and ethics