Skip to main content

Mechanical and Biodegradable Behavior of AZ31 Magnesium Alloy Immersed in Simulated Body Fluid

  • Conference paper
  • First Online:
Challenges in Mechanics of Time Dependent Materials, Volume 2

Abstract

AZ31 magnesium alloy was immersed in simulated body fluid at body temperature for various durations to study its degradation/corrosion behavior and the immersed/corroded samples were tested under compression to study the effect of immersion processing on mechanical properties of the material. The immersed/corroded sample surfaces were observed using scanning electron microscope. The results show that the degradation started with uniform corrosion over the whole surface and proceeded to localized pitting corrosion; the corrosion rate decreased during the initial stage of immersion testing and then reached a plateau with the proceeding of immersion testing; and the studied AZ31 magnesium alloy did not experience significant deterioration of mechanical properties (i.e., yield strength and ultimate compression strength) after it was immersed in simulated body fluid for up to 14 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, H.F., Li, C.J., Fang, W.B.: Corrosion behavior of extrusion-drawn pure mg wire immersed in simulated body fluid. Trans. Nonferrous Metals Soc. China. 21, s258–s261 (2011)

    Article  Google Scholar 

  2. Witte, F., Feyerabend, F., Maier, P., Fischer, J., Störmer, M., Blawert, C., Dietzel, W., Hort, N.: Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials. 28(13), 2163–2174 (2007)

    Article  Google Scholar 

  3. Zhang, E., He, W., Du, H., Yang, K.: Microstructure, mechanical properties and corrosion properties of mg–Zn–Y alloys with low Zn content. Mater. Sci. Eng. A. 488(1), 102–111 (2008)

    Article  Google Scholar 

  4. Mordike, B.L., Ebert, T.: Magnesium: properties—applications—potential. Mater. Sci. Eng. A. 302(1), 37–45 (2001)

    Article  Google Scholar 

  5. Yang, L.J., Wei, Y.H., Hou, L.F., Zhang, D.: Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corros. Sci. 52(2), 345–351 (2010)

    Article  Google Scholar 

  6. Song, Y., Han, E.H., Shan, D., Yim, C.D., You, B.S.: The role of second phases in the corrosion behavior of mg–5Zn alloy. Corros. Sci. 60, 238–245 (2012)

    Article  Google Scholar 

  7. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., Windhagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 26(17), 3557–3563 (2005)

    Article  Google Scholar 

  8. Hänzi, A.C., Gunde, P., Schinhammer, M., Uggowitzer, P.J.: On the biodegradation performance of an mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomater. 5(1), 162–171 (2009)

    Article  Google Scholar 

  9. Han, G., Lee, J.Y., Kim, Y.C., Park, J.H., Kim, D.I., Han, H.S., Yang, S.J., Seok, H.K.: Preferred crystallographic pitting corrosion of pure magnesium in hanks’ solution. Corros. Sci. 63, 316–322 (2012)

    Article  Google Scholar 

  10. Wong, H.M., Yeung, K.W., Lam, K.O., Tam, V., Chu, P.K., Luk, K.D., Cheung, K.M.: A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 31(8), 2084–2096 (2010)

    Article  Google Scholar 

  11. Ye, X., Cai, S., Dou, Y., Xu, G., Huang, K., Ren, M., Wang, X.: Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable mg alloy. Appl. Surf. Sci. 259, 799–805 (2012)

    Article  Google Scholar 

  12. Gu, Y., Bandopadhyay, S., Chen, C.F., Ning, C., Guo, Y.: Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 mg alloys for biomedical applications. Mater. Des. 46, 66–75 (2013)

    Article  Google Scholar 

  13. Matsubara, H., Ichige, Y., Fujita, K., Nishiyama, H., Hodouchi, K.: Effect of impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys. Corros. Sci. 66, 203–210 (2013)

    Article  Google Scholar 

  14. Kannan, M.B., Raman, R.S.: In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials. 29(15), 2306–2314 (2008)

    Article  Google Scholar 

  15. Wang, H., Estrin, Y., Fu, H.M., Song, G.L., Zuberova, Z.: The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31. Adv. Eng. Mater. 9(11), 967–972 (2007)

    Article  Google Scholar 

  16. Gu, X., Zheng, Y., Cheng, Y., Zhong, S., Xi, T.: In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 30(4), 484–498 (2009)

    Article  Google Scholar 

  17. Mochizuki, A., Kaneda, H.: Study on the blood compatibility and biodegradation properties of magnesium alloys. Mater. Sci. Eng. C. 47, 204–210 (2015)

    Article  Google Scholar 

  18. Ma, W., Liu, Y., Wang, W., Zhang, Y.: Effects of electrolyte component in simulated body fluid on the corrosion behavior and mechanical integrity of magnesium. Corros. Sci. 98, 201–210 (2015)

    Article  Google Scholar 

  19. Wang, Y., Wei, M., Gao, J., Hu, J., Zhang, Y.: Corrosion process of pure magnesium in simulated body fluid. Mater. Lett. 62(14), 2181–2184 (2008)

    Article  Google Scholar 

  20. Wen, Z., Wu, C., Dai, C., Yang, F.: Corrosion behaviors of mg and its alloys with different al contents in a modified simulated body fluid. J. Alloys Compd. 488(1), 392–399 (2009)

    Article  Google Scholar 

  21. Liu, C., Xin, Y., Tang, G., Chu, P.K.: Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mater. Sci. Eng. A. 456(1), 350–357 (2007)

    Article  Google Scholar 

  22. Kruger, R., Seitz, J.M., Ewald, A., Bach, F.W., Groll, J., Engelen, E.: Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement. J. Mech. Behav. Biomed. Mater. 20, 36–44 (2013)

    Article  Google Scholar 

  23. Shang, S.L., Wang, W.Y., Zhou, B.C., Wang, Y., Darling, K.A.: Generalized stacking fault energy, ideal strength and twinnability of dilute mg-based alloys: a first-principles study of shear deformation. Acta Mater. 67, 168–180 (2014)

    Article  Google Scholar 

  24. Dallmeier, J., Huber, O., Saage, H., Eigenfeld, K.: Uniaxial cyclic deformation and fatigue behavior of AM50 magnesium alloy sheet metals under symmetric and asymmetric loadings. Mater. Des. 70, 10–30 (2015)

    Article  Google Scholar 

  25. Li, Q.Z., Tian, B.: Compression behavior of magnesium/carbon nanotube composites. J. Mater. Res. 28(14), 1877–1884 (2013)

    Article  Google Scholar 

  26. Li, Q.Z., Tian, B.: Mechanical properties and microstructure of pure polycrystalline magnesium rolled by different routes. Mater. Lett. 67(1), 81–83 (2012)

    Article  MathSciNet  Google Scholar 

  27. Song, R., Liu, D.B., Liu, Y.C., Zheng, W.B., Zhao, Y., Chen, M.F.: Effect of corrosion on mechanical behaviors of mg-Zn-Zr alloy in simulated body fluid. Front. Mater. Sci. 8(3), 264–270 (2014)

    Article  Google Scholar 

  28. Fu, S., Gao, H., Chen, G., Gao, L., Chen, X.: Deterioration of mechanical properties for pre-corroded AZ31 sheet in simulated physiological environment. Mater. Sci. Eng. A. 593, 153–162 (2014)

    Article  Google Scholar 

  29. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27(15), 2907–2915 (2006)

    Article  Google Scholar 

  30. ASTM-G31–72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals. ASTM International, West Conshohacken, PA, USA (2004)

    Google Scholar 

  31. Zhang, J.Q.: Electrochemical Measurement Technology. Chemical Industry Press, Beijing (2010)

    Google Scholar 

  32. Jin, W.H., Wu, G.S., Feng, H.Q., Wang, W.H., Zhang, X.M., Chu, P.K.: Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corros. Sci. 94, 142 (2015)

    Article  Google Scholar 

  33. Jiang, L., Xu, F., Xu, Z., Chen, Y., Zhou, X., Wei, G., Ge, H.: Biodegradation of AZ31 and WE43 magnesium alloys in simulated body fluid. Int. J. Electrochem. Sci. 10, 10422–10432 (2015)

    Google Scholar 

  34. Baril, G., Galicia, G., Deslouis, C., Pébère, N., Tribollet, B., Vivier, V.: An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. J. Electrochem. Soc. 154(2), C108–C113 (2007)

    Article  Google Scholar 

  35. Song, G., Atrens, A., Stjohn, D., Nairn, J., Li, Y.: The electrochemical corrosion of pure magnesium in 1 N NaCl. Corros. Sci. 39(5), 855–875 (1997)

    Article  Google Scholar 

  36. Wang, X., Li, J.T., Xie, M.Y., Qu, L.J., Zhang, P., Li, X.L.: Structure, mechanical property and corrosion behaviors of (HA + β-TCP)/mg-5Sn composite with interpenetrating networks. Mater. Sci. Eng. C. 56, 386–392 (2015)

    Article  Google Scholar 

  37. Song, G., Atrens, A.: Understanding magnesium corrosion—a framework for improved alloy performance. Adv. Eng. Mater. 5(12), 837–858 (2003)

    Article  Google Scholar 

  38. Xin, Y., Huo, K., Tao, H., Tang, G., Chu, P.K.: Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 4(6), 2008–2015 (2008)

    Article  Google Scholar 

  39. Harandi, S.E., Mirshahi, M., Koleini, S., Idris, M.H., Jafari, H., Kadir, M.: Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable mg-ca binary alloy. Mater. Res. 16(1), 11–18 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

The support for the research from the National Science Foundation under Award No. 1449607 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhen Z. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Lin, W., Zou, N., Li, Q.Z. (2018). Mechanical and Biodegradable Behavior of AZ31 Magnesium Alloy Immersed in Simulated Body Fluid. In: Arzoumanidis, A., Silberstein, M., Amirkhizi, A. (eds) Challenges in Mechanics of Time Dependent Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-63393-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63393-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63392-3

  • Online ISBN: 978-3-319-63393-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics