Skip to main content

Sustainable Wastewater Treatment for Households in Small Communities

  • Conference paper
  • First Online:
Nearly Zero Energy Communities (CSE 2017)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 1232 Accesses

Abstract

The paper is a comprehensive review on the wastewater treatment processes focused on the energy performance and energy efficiency. Extensive studies reported in literature, including results from our Renewable Energy Systems and Recycling R&D Center, are selected to give a clear view on the advantages and disadvantages of traditional and advanced wastewater treatment processes, from the energy consumption perspective. The challenges in terms of energy saving, process optimization and sustainable materials are presented. The traditional processes used in the wastewater plants have limited efficiency for removing the new organic pollutants and usually require environmental aggressive procedures (e.g. chlorination). Advanced wastewater treatments using common raw materials and renewable energy sources represent a sustainable answer to the problem raised by the resilient organic pollutants. So, the paper outlines that advanced wastewater treatment represents a suitable part of the strategy for planning nearly zero energy communities (nZEC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romanian Government decision according with HG. Nb. 188 from 2002

    Google Scholar 

  2. Longo, S., Antoni, B.M., Bongards, M., Chaparro, A., Cronrath, A., Fatone, F., Lema, J.M., Mauricio-Iglesias, M., Soares, A., Hospido, A.: Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy, 179, 1251–1268 (2016). http://dx.doi.org/10.1016/j.apenergy.2016.07.043

  3. Foladori, P., Vaccari, M., Vitali, F.: Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned. Water Sci. Technol. 72, 1007–1015 (2015). http://dx.doi.org/10.2166/wst.2015.306

  4. Chowdhury, S., Jafar Mazumder, M.A., Al-Attas, O., Husain, T.: Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ. 569–570, 476–488 (2016). http://dx.doi.org/10.1016/j.scitotenv.2016.06.166

  5. Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Ng, W.J., Tan, S.K.: Application of constructed wetlands for wastewater treatment in developing countries - a review of recent developments (2000–2013). J. Environ. Manag. 141, 116–131 (2014). http://dx.doi.org/10.1016/j.jenvman.2014.03.015

  6. Goldstein, R., Smith, W.: Water & Sustainability: US Electricity Consumption for Water Supply & Treatment-the Next Half Century, vol. 4. Electric Power Research Institute, Palo Alto (2012)

    Google Scholar 

  7. Liu, H.Q., Lam, J.C.W., Li, W.W., Yu, H.Q., Lam, P.K.S.: Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China. Sci. Total Environ. 586, 1162–1169 (2017). http://dx.doi.org/10.1016/j.scitotenv.2017.02.107

  8. Barbu, M., Vilanova, R., Meneses, M., Santin, I.: On the evaluation of the global impact of control strategies applied to wastewater treatment plants. J. Clean. Prod. 149, 396–405 (2017). http://dx.doi.org/10.1016/j.jclepro.2017.02.018

  9. Wang, Q., Wei, W., Gong, Y., Yu, Q., Li, Q., Sun, J., Yuan, Z.: Technologies for reducing sludge production in wastewater treatment plants: state of the art. Sci. Total Environ. 587–588, 510–521 (2017). http://dx.doi.org/10.1016/j.scitotenv.2017.02.203

  10. Ebrahimi, M., Gerber, E.L., Rockaway, T.D.: Temporal performance assessment of wastewater treatment plants by using multivariate statistical analysis. J. Environ. Manag. 193, 234–246 (2017). http://dx.doi.org/10.1016/j.jenvman.2017.02.027

  11. Dong, X., Zhang, X., Zeng, S.: Measuring and explaining eco-efficiencies of wastewater treatment plants in China: an uncertainty analysis perspective. Water Res. 112, 195–207 (2017). http://dx.doi.org/10.1016/j.watres.2017.01.026

  12. RAJA Constanta local operator. www.rajac.ro

  13. ApaNova Ploiesti local operator. www.apanova-ploiesti.ro

  14. Mousel, D., Palmowski, L., Pinnekamp, J.: Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants. Sci. Total Environ. 575, 1139–1149 (2017). http://dx.doi.org/10.1016/j.scitotenv.2016.09.197

  15. Frone, S., Frone, D.F.: Factors and trends of economic efficiency in the water/wastewater sector. Procedia Econ. Finan. 3, 1018–1024 (2012). http://dx.doi.org/10.1016/S2212-5671(12)00267-5

  16. Yang, L., Zeng, S., Chen, J., He, M., Yang, W.: Operational energy performance assessment system of municipal wastewater treatment plants. Water Sci. Technol. 62, 1361–1370 (2010). http://dx.doi.org/10.2166/wst.2010.394

  17. Krampe, J.: Energy benchmarking of South Australian WWTPs. Water Sci. Technol. 67, 2059–2066 (2013). http://dx.doi.org/10.2166/wst.2013.090

  18. Balmer, P.: Operation costs and consumption of resources at Nordic nutrient removal plants. Water Sci. Technol. 41, 273–279 (2000)

    Google Scholar 

  19. Mizuta, K., Shimada, M.: Benchmarking energy consumption in municipal wastewater treatment plants in Japan. Water Sci. Technol. 62, 2256–2262 (2010). http://dx.doi.org/10.2166/wst.2010.510

  20. Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F.: Energy balance performance of municipal wastewater treatment systems considering sludge anaerobic biodegradability and biogas utilisation routes. J. Environ. Chem. Eng. 4, 4680–4689 (2016). http://dx.doi.org/10.1016/j.jece.2016.10.030

  21. Henriques, J., Catarino, J.: Sustainable value - an energy efficiency indicator in wastewater treatment plants. J. Clean. Prod. 142, 323–330 (2017). http://dx.doi.org/10.1016/j.jclepro.2016.03.173

  22. Kumar, M., Singh, R.: Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment. Bioresour. Technol. 232, 321–330 (2017). http://dx.doi.org/10.1016/j.biortech.2017.02.026

  23. Kollmann, R., Neugebauer, G., Kretschmer, F., Truger, B., Kindermann, H., Stoeglehner, G., Ertl, T., Narodoslawsky, M.: Renewable energy from wastewater - practical aspects of integrating a wastewater treatment plant into local energy supply concepts. J. Clean. Prod. 155, 119–129 (2017). http://dx.doi.org/10.1016/j.jclepro.2016.08.168

  24. Hickman, W., Muzhikyan, A., Farid, A.M.: The synergistic role of renewable energy integration into the unit commitment of the energy water nexus. Renew. Energy 108, 220–229 (2017). http://dx.doi.org/10.1016/j.renene.2017.02.063

  25. Wang, H., Yang, Y., Keller, A.A., Li, X., Feng, S., Dong, Y., Li, F.: Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Appl. Energy 184, 873–881 (2016). http://dx.doi.org/10.1016/j.apenergy.2016.07.061

  26. Fernández-Arévalo, T., Lizarralde, I., Fdz-Polanco, F., Pérez-Elvira, S.I., Garrido, J.M., Puig, S., Poch, M., Grau, P., Ayesa, E.: Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations. Water Res. 118, 272–288 (2017). http://dx.doi.org/10.1016/j.watres.2017.04.001

  27. Rashidi, H., Hoseini, A.G., Sulaiman, N.M.N., Tookey, J., Hashim, N.A.: Application of wastewater treatment in sustainable design of green built environments: a review. Renew. Sustain. Energy Rev. 49, 845–856 (2015). http://dx.doi.org/10.1016/j.rser.2015.04.104

  28. Wieck, S., Olsson, O., Kümmerer, K.: Possible underestimations of risks for the environment due to unregulated emissions of biocides from households to wastewater. Environ. Int. 94, 695–705 (2016). http://dx.doi.org/10.1016/j.envint.2016.07.007

  29. Teodosiu, C., Barjoveanu, G., Robu Sluser, B., Ene Popa, S.A., Trofin, O.: Environmental assessment of municipal wastewater discharges: a comparative study of evaluation methods. Int. J. Life Cycle Assess. 21, 395–411 (2016). http://dx.doi.org/10.1007/s11367-016-1029-5

  30. Bustamante, M., Liao, W.: A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation. Bioresour. Technol. 234, 415–423 (2017). http://dx.doi.org/10.1016/j.biortech.2017.03.065

  31. Pintilie, L., Torres, C.M., Teodosiu, C., Castells, F.: Urban wastewater reclamation for industrial reuse: an LCA case study. J. Clean. Prod. 139, 1–14 (2016). http://dx.doi.org/10.1016/j.jclepro.2016.07.209

  32. Barjoveanu, G., Comandaru, I.M., Rodriguez-Garcia, G., Hospido, A., Teodosiu, C.: Evaluation of water services system through LCA. A case study for Iasi City, Romania. Int. J. Life Cycle Assess. 19, 449–462 (2014). http://dx.doi.org/10.1007/s11367-013-0635-8

  33. Demirbas, E., Kobya, M.: Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Saf. Environ. Prot. 105, 79–90 (2017). http://dx.doi.org/10.1016/j.psep.2016.10.013

  34. Ioannou-Ttofa, L., Michael-Kordatou, I., Fattas, S.C., Eusebio, A., Ribeiro, B., Rusan, M., Amer, A.R.B., Zuraiqi, S., Waismand, M., Linder, C., Wiesman, Z., Gilron, J., Fatta-Kassinos, D.: Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Water Res. 114, 1–13 (2017). http://dx.doi.org/10.1016/j.watres.2017.02.020

  35. Andreo-Martínez, P., García-Martínez, N., Quesada-Medina, J., Almela, L.: Domestic wastewaters reuse reclaimed by an improved horizontal subsurface-flow constructed wetland: a case study in the southeast of Spain. Bioresour. Technol. 233, 236–246 (2017). http://dx.doi.org/10.1016/j.biortech.2017.02.123

  36. Wang, X., Ratnaweera, H., Holm, J.A., Olsbu, V.: Statistical monitoring and dynamic simulation of a wastewater treatment plant: a combined approach to achieve model predictive control. J. Environ. Manag. 193, 1–7 (2017). http://dx.doi.org/10.1016/j.jenvman.2017.01.079

  37. Yang, Y., Zhou, Z., Lu, C., Chen, Y., Ge, H., Wang, L., Cheng, C.: Treatment of chemical cleaning wastewater and cost optimization by response surface methodology coupled nonlinear programming. J. Environ. Manag. 198, 12–20 (2017). http://dx.doi.org/10.1016/j.jenvman.2017.05.009

  38. Ruiz-Rosa, I., García-Rodríguez, F.J., Mendoza-Jiménez, J.: Development and application of a cost management model for wastewater treatment and reuse processes. J. Clean. Prod. 113, 299–310 (2016). http://dx.doi.org/10.1016/j.jclepro.2015.12.044

  39. Theregowda, R.B., Vidic, R., Landis, A.E., Dzombak, D.A., Matthews, H.S.: Integrating external costs with life cycle costs of emissions from tertiary treatment of municipal wastewater for reuse in cooling systems. J. Clean. Prod. 112, 4733–4740 (2016). http://dx.doi.org/10.1016/j.jclepro.2015.06.020

  40. Eggimann, S., Truffer, B., Maurer, M.: Economies of density for on-site waste water treatment. Water Res. 101, 476–489 (2016). http://dx.doi.org/0.1016/j.watres.2016.06.011

  41. De Gisi, S., Lofrano, G., Grassi, M., Notarnicola, M.: Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain. Mater. Technol. 9, 10–40 (2016). http://dx.doi.org/10.1016/j.susmat.2016.06.002

  42. Kårelid, V., Larsson, G., Björlenius, B.: Pilot-scale removal of pharmaceuticals in municipal wastewater: comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. J. Environ. Manag. 193, 491–502 (2017). http://dx.doi.org/10.1016/j.jenvman.2017.02.042

  43. Silva, C., Rosa, M.J.: Energy performance indicators of wastewater treatment - a field study with 17 Portuguese plants. Water Sci. Technol. 72, 510–519 (2015). http://dx.doi.org/10.2166/wst.2015.189

  44. Laitinen, J., Moliis, K., Surakka, M.: Resource efficient wastewater treatment in a developing area - climate change impacts and economic feasibility. Ecol. Eng. 103, 217–225 (2017). http://dx.doi.org/10.1016/j.ecoleng.2017.04.017

  45. Mujtaba, G., Lee, K.: Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Res. 120, 174–184 (2017). http://dx.doi.org/10.1016/j.watres.2017.04.078

  46. Gu, Y., Li, Y., Li, X., Luo, P., Wanga, H., Robinson, Z.P., Wangc, X., Wuc, J., Li, F.: The feasibility and challenges of energy self-sufficient waste water treatment plants. Appl. Energy (2017, accepted for publication). doi:10.1016/j.apenergy.2017.02.069

  47. Xue, S., Jin, W., Zhang, Z., Liu, H.: Reductions of dissolved organic matter and disinfection by-product precursors in full-scale wastewater treatment plants in winter. Chemosphere 179, 395–404 (2017). http://dx.doi.org/10.1016/j.chemosphere.2017.02.106

  48. Ahn, Y., Logan, B.E.: Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 101, 469–475 (2010). http://dx.doi.org/10.1016/j.biortech.2009.07.039

  49. Craggs, R.J., Lundquist, T.J., Benemann, J.R.: Wastewater treatment and algal biofuel production. In: Algae for Biofuels and Energy, pp. 153–163. Springer (2013). doi:10.1007/978-94-007-5479-9_9

  50. Mehrabadi, A., Craggs, R., Farid, M.M.: Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresour. Technol. 184, 202–214 (2015). http://dx.doi.org/10.1016/j.biortech.2014.11.004

  51. Soltermann, F., Abegglen, C., Tschui, M., Stahel, S., von Gunten, U.: Options and limitations for bromate control during ozonation of wastewater. Water Res. 116, 76–85 (2017). http://dx.doi.org/10.1016/j.watres.2017.02.026

  52. Enesca, A., Baneto, M., Perniu, D., Isac, L., Bogatu, C., Duta, A.: Solar-activated tandem thin films based on CuInS2, TiO2 and SnO2 in optimized wastewater treatment processes. Appl. Catal. B: Environ. 186, 69–76. http://dx.doi.org/10.1016/j.apcatb.2015.12.053

  53. Trapido, M., Tenno, T., Goi, A., Dulova, N., Kattel, E., Klauson, D., Klein, K., Viisimaa, M.: Bio-recalcitrant pollutants removal from wastewater with combination of the Fenton treatment and biological oxidation. J. Water Process Eng. 16, 277–282 (2017). http://dx.doi.org/10.1016/j.jwpe.2017.02.007

  54. Liu, F., Jamal, R., Wang, Y., Wang, M., Yang, L., Abdiryim, T.: Photodegradation of methylene blue by photocatalyst of D-A-D type polymer/functionalized multi-walled carbon nanotubes composite under visible-light irradiation. Chemosphere 168, 1669–1676 (2017). http://dx.doi.org/10.1016/j.chemosphere.2016.11.068

  55. Enesca, A., Isac, L., Duta, A.: Charge carriers injection in tandem semiconductors for dyesmineralization. Appl. Catal. B: Environ. 162, 352–363 (2015). http://dx.doi.org/10.1016/j.apcatb.2014.06.059

  56. Nagarajan, S., Skillen, N.C., Fina, F., Zhang, G., Randorn, C., Lawton, L.A., Irvine, J.T.S., Robertson, P.K.J.: Comparative assessment of visible light and UV active photocatalysts by hydroxyl radical quantification. J. Photochem. Photobiol. A: Chem. 334, 13–19 (2017). http://dx.doi.org/10.1016/j.jphotochem.2016.10.034

  57. Enesca, A.: Influence of precursor composition on optoelectric and photocatalytic properties of TiO2 and WO3 film. Environ. Eng. Manag. J. 10, 1191–1196 (2011)

    Google Scholar 

  58. Enesca, A., Andronic, L., Duta, A.: The influence of surfactants on the crystalline structure, electrical and photocatalytic properties of hybrid multi-structured (SnO2, TiO2 and WO3) thin films. Appl. Surface Sci. 258, 4339–4346 (2012). http://dx.doi.org/10.1016/j.apsusc.2011.12.110

  59. Enesca, A., Andronic, L., Duta, A.: Optimization of opto-electrical and photocatalytic properties of SnO2 thin films using Zn2+ and W6+ dopant ions. Catal. Lett. 142, 224–230 (2012). http://dx.doi.org/10.1007/s10562-011-0762-4

  60. Enesca, A., Isac, L., Duta, A.: Hybrid structure comprised of SnO2, ZnO and Cu2S thin film semiconductors with controlled optoelectric and photocatalytic properties. This Solid Films 542, 31–37 (2013). http://dx.doi.org/10.1016/j.tsf.2013.06.008

  61. Al-Bastaki, N.M.: Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chem. Eng. Process.: Process Intensif. 43, 935–940 (2004). http://dx.doi.org/10.1016/j.cep.2003.08.003

  62. Enesca, A., Yamaguchi, Y., Terashima, C., Fujishima, A., Nakata, K., Duta, A.: Enhanced UV-Vis photocatalytic performance of the CuInS2/TiO2/SnO2 hetero-structure for air decontamination. J. Catal. 350, 174–181 (2017). http://dx.doi.org/0.1016/j.jcat.2017.02.015

  63. Brandt, M., Middleton, R., Wang, S.: Energy efficiency in the water industry: a compendium of best practices and case studies-global report. Water Intell. 11, 9781780401348 (2012)

    Google Scholar 

  64. Sharma, A.K., Guildal, T., Thomsen, H., Jacobsen, B.: Energy savings by reduced mixing in aeration tanks: results from a full scale investigation and long term implementation at Avedoere wastewater treatment plant. Water Sci. Technol. 64, 1–5 (2011). http://dx.doi.org/10.2166/wst.2011.546

Download references

Acknowledgments

We hereby acknowledge the project Photocat Flow, PN-III-P2-2.1-PED-2016-0514, for providing the founds that supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Enesca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Enesca, A., Andronic, L., Duta, A., Visa, I. (2018). Sustainable Wastewater Treatment for Households in Small Communities. In: Visa, I., Duta, A. (eds) Nearly Zero Energy Communities. CSE 2017. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-63215-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63215-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63214-8

  • Online ISBN: 978-3-319-63215-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics