Skip to main content

TGF-β in Development and Ageing

  • Chapter
  • First Online:
  • 1119 Accesses

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 6))

Abstract

Transforming Growth Factor-β (TGF-β) is the prototype of a growth factor family playing central roles in a wide variety of functions both at the tissue and the organismal levels, ranging from the regulation of cell proliferation, and the enhancement of extracellular matrix accumulation to immunosuppression and a dual role in cancer development. Here, we present a brief description of TGF-β in terms of structural and functional aspects, including the major signal transduction pathways activated by it. The role of TGF-β as an inducer of cellular senescence in normal, malignant and stem cells is documented, as well as, its ability to induce or reinforce senescence when acting in an autocrine or paracrine fashion, as part of the senescence-associated secretory phenotype. The interplay of TGF-β with the two major intracellular protein degradation systems, i.e. autophagy and the ubiquitin-proteasome system, is also discussed, given their associations with senescence and age-related pathologies. The importance of the TGF-β signaling axis in organismal development is documented through the presentation of a variety of knock out approaches. Furthermore, we present its contribution to the programmed cellular senescence during development, as a newly recognized means for tissue patterning and remodeling. Finally, the role of TGF-β in age-related diseases and in longevity is discussed, based on data regarding gene polymorphisms, as well as, the plasma levels of this growth factor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990. doi:10.1038/ncb2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armatas AA, Pratsinis H, Mavrogonatou E, Angelopoulou MT, Kouroumalis A, Karamanos NK, Kletsas D (2014) The differential proliferative response of fetal and adult human skin fibroblasts to TGF-beta is retained when cultured in the presence of fibronectin or collagen. Biochim Biophys Acta 1840(8):2635–2642. doi:10.1016/j.bbagen.2014.04.004

  • Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, Charlton R, Parums DV, Jowett T, Marchuk DA, Burn J, Diamond AG (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217(1):42–53. doi:10.1006/dbio.1999.9534

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1(5):260–266. doi:10.1038/12971

    Article  CAS  PubMed  Google Scholar 

  • Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10(9):1077–1083. doi:10.1210/mend.10.9.8885242

    CAS  PubMed  Google Scholar 

  • Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R (1990) TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63(3):515–524

    Article  CAS  PubMed  Google Scholar 

  • Bergamini E, Cavallini G, Donati A, Gori Z (2007) The role of autophagy in aging: its essential part in the anti-aging mechanism of caloric restriction. Ann N Y Acad Sci 1114:69–78. doi:10.1196/annals.1396.020

    Article  CAS  PubMed  Google Scholar 

  • Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS, Waes CV, Kulkarni AB (2012) Loss of TGF-beta signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene 31(28):3322–3332. doi:10.1038/onc.2011.494

    Article  CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL (2006) TGF-beta and cancer. Cytokine Growth Factor Rev 17(1–2):29–40. doi:10.1016/j.cytogfr.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  • Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K, Wrana JL (2001) TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3(6):587–595. doi:10.1038/35078562

    Article  CAS  PubMed  Google Scholar 

  • Bosco P, Ferri R, Salluzzo MG, Castellano S, Signorelli M, Nicoletti F, Nuovo SD, Drago F, Caraci F (2013) Role of the transforming-growth-factor-beta1 gene in late-onset Alzheimer’s disease: implications for the treatment. Curr Genomics 14(2):147–156. doi:10.2174/1389202911314020007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdeau A, Dumont DJ, Letarte M (1999) A murine model of hereditary hemorrhagic telangiectasia. J Clin Investig 104(10):1343–1351. doi:10.1172/jci8088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrard G, Bulteau AL, Petropoulos I, Friguet B (2002) Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 34(11):1461–1474

    Article  CAS  PubMed  Google Scholar 

  • Carrieri G, Marzi E, Olivieri F, Marchegiani F, Cavallone L, Cardelli M, Giovagnetti S, Stecconi R, Molendini C, Trapassi C, De Benedictis G, Kletsas D, Franceschi C (2004) The G/C915 polymorphism of transforming growth factor beta1 is associated with human longevity: a study in Italian centenarians. Aging Cell 3(6):443–448. doi:10.1111/j.1474-9728.2004.00129.x

    Article  CAS  PubMed  Google Scholar 

  • Cassar L, Nicholls C, Pinto AR, Chen R, Wang L, Li H, Liu JP (2016) TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence. Protein Cell. doi:10.1007/s13238-016-0322-1

    PubMed  PubMed Central  Google Scholar 

  • Chen Q, Chen H, Zheng D, Kuang C, Fang H, Zou B, Zhu W, Bu G, Jin T, Wang Z, Zhang X, Chen J, Field LJ, Rubart M, Shou W, Chen Y (2009) Smad7 is required for the development and function of the heart. J Biol Chem 284(1):292–300. doi:10.1074/jbc.M807233200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung ACK, Lan HY (2011) The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60(2):590–601. doi:10.2337/db10-0403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES (2015) Proteasome activation: an innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 23(Pt A):37–55. doi:10.1016/j.arr.2014.12.003

  • Chung AC, Huang XR, Zhou L, Heuchel R, Lai KN, Lan HY (2009) Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol Dialysis Transpl: Official Publ Eur Dialysis Transpl Assoc Eur Renal Assoc 24(5):1443–1454. doi:10.1093/ndt/gfn699

    Article  CAS  Google Scholar 

  • Ciechanover A (2013) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorg Med Chem 21(12):3400–3410. doi:10.1016/j.bmc.2013.01.056

    Article  CAS  PubMed  Google Scholar 

  • Cipriano R, Kan CE, Graham J, Danielpour D, Stampfer M, Jackson MW (2011) TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci U S A 108(21):8668–8673. doi:10.1073/pnas.1015022108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compton LA, Potash DA, Brown CB, Barnett JV (2007) Coronary vessel development is dependent on the type III transforming growth factor beta receptor. Circ Res 101(8):784–791. doi:10.1161/circresaha.107.152082

    Article  CAS  PubMed  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868. doi:10.1371/journal.pbio.0060301

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1(3):131–140

    Article  PubMed  Google Scholar 

  • Dang H, Geiser AG, Letterio JJ, Nakabayashi T, Kong L, Fernandes G, Talal N (1995) SLE-like autoantibodies and Sjogren’s syndrome-like lymphoproliferation in TGF-beta knockout mice. J Immunol (Baltimore, Md: 1950) 155(6):3205–3212

    Google Scholar 

  • Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 19(4):2495–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O (2005) Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci 118(Pt 4):743–758. doi:10.1242/jcs.01651

    Article  CAS  PubMed  Google Scholar 

  • Desai LP, Zhou Y, Estrada AV, Ding Q, Cheng G, Collawn JF, Thannickal VJ (2014) Negative regulation of NADPH oxidase 4 by hydrogen peroxide-inducible clone 5 (Hic-5) protein. J Biol Chem 289(26):18270–18278. doi:10.1074/jbc.M114.562249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121(6):1845–1854

    CAS  PubMed  Google Scholar 

  • Diebold RJ, Eis MJ, Yin M, Ormsby I, Boivin GP, Darrow BJ, Saffitz JE, Doetschman T (1995) Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci U S A 92(26):12215–12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Kim S, Lee SY, Koo JK, Wang Z, Choi ME (2014) Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol: JASN 25(12):2835–2846. doi:10.1681/ASN.2013101068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada KD, Retting KN, Chin AM, Lyons KM (2011) Smad6 is essential to limit BMP signaling during cartilage development. J Bone Mineral Res: Official J Am Soc Bone Mineral Res 26(10):2498–2510. doi:10.1002/jbmr.443

    Article  CAS  Google Scholar 

  • Forsey RJ, Thompson JM, Ernerudh J, Hurst TL, Strindhall J, Johansson B, Nilsson BO, Wikby A (2003) Plasma cytokine profiles in elderly humans. Mech Ageing Dev 124(4):487–493

    Article  CAS  PubMed  Google Scholar 

  • Frippiat C, Chen QM, Zdanov S, Magalhaes JP, Remacle J, Toussaint O (2001) Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem 276(4):2531–2537. doi:10.1074/jbc.M006809200

    Article  CAS  PubMed  Google Scholar 

  • Frippiat C, Dewelle J, Remacle J, Toussaint O (2002) Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts. Free Radic Biol Med 33(10):1334–1346

    Article  CAS  PubMed  Google Scholar 

  • Fu MY, He YJ, Lv X, Liu ZH, Shen Y, Ye GR, Deng YM, Shu JC (2014) Transforming growth factorbeta1 reduces apoptosis via autophagy activation in hepatic stellate cells. Mol Med Rep 10(3):1282–1288. doi:10.3892/mmr.2014.2383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K, Miyazono K (2001) Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell 12(5):1431–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuxe J, Karlsson MC (2012) TGF-beta-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol 22(5–6):455–461. doi:10.1016/j.semcancer.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  • Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MA, Falb D, Huszar D (2000) A role for Smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24(2):171–174

    Article  CAS  PubMed  Google Scholar 

  • Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, Singal R, Dixon IM (2015) Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 6:e1696. doi:10.1038/cddis.2015.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannouli CC, Kletsas D (2006) TGF-beta regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2. Cell Signal 18(9):1417–1429. doi:10.1016/j.cellsig.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  • Groenen LC, Nice EC, Burgess AW (1994) Structure-function relationships for the EGF/TGF-alpha family of mitogens. Growth Factors 11(4):235–257

    Article  CAS  PubMed  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science (New York, N Y) 271(5247):350–353

    Article  CAS  Google Scholar 

  • Hamaguchi T, Okino S, Sodeyama N, Itoh Y, Takahashi A, Otomo E, Matsushita M, Mizusawa H, Yamada M (2005) Association of a polymorphism of the transforming growth factor-beta1 gene with cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 76(5):696–699. doi:10.1136/jnnp.2003.034454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24. doi:10.1371/journal.pgen.0040024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassona Y, Cirillo N, Lim KP, Herman A, Mellone M, Thomas GJ, Pitiyage GN, Parkinson EK, Prime SS (2013) Progression of genotype-specific oral cancer leads to senescence of cancer-associated fibroblasts and is mediated by oxidative stress and TGF-beta. Carcinogenesis 34(6):1286–1295. doi:10.1093/carcin/bgt035

    Article  CAS  PubMed  Google Scholar 

  • Hassona Y, Cirillo N, Heesom K, Parkinson EK, Prime SS (2014) Senescent cancer-associated fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion. Br J Cancer 111(6):1230–1237. doi:10.1038/bjc.2014.438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9):1077–1081. doi:10.1038/nm.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heldin CH, Moustakas A (2016) Signaling receptors for TGF-beta family members. In: Cold Spring Harbor perspectives in biology, vol 8(8). doi:10.1101/cshperspect.a022053

  • Heldin CH, Landstrom M, Moustakas A (2009) Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21(2):166–176. doi:10.1016/j.ceb.2009.01.021

    Article  CAS  PubMed  Google Scholar 

  • Hinz B (2015) The extracellular matrix and transforming growth factor-beta1: Tale of a strained relationship. Matrix Biol: J Int Soc Matrix Biol 47:54–65. doi:10.1016/j.matbio.2015.05.006

    Article  CAS  Google Scholar 

  • Holweg CT, Baan CC, Niesters HG, Vantrimpont PJ, Mulder PG, Maat AP, Weimar W, Balk AH (2001) TGF-beta1 gene polymorphisms in patients with end-stage heart failure. J Heart Lung Transpl: Official Publ Int Soc Heart Transpl 20(9):979–984

    Article  CAS  Google Scholar 

  • Horbelt D, Denkis A, Knaus P (2012) A portrait of transforming growth factor beta superfamily signalling: background matters. Int J Biochem Cell Biol 44(3):469–474. doi:10.1016/j.biocel.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Ota M, Rifkin DB (2012) Matrix control of transforming growth factor-beta function. J Biochem 152(4):321–329. doi:10.1093/jb/mvs089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubackova S, Krejcikova K, Bartek J, Hodny Z (2012) IL1- and TGFbeta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging 4(12):932–951. doi:10.18632/aging.100520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubackova S, Kucerova A, Michlits G, Kyjacova L, Reinis M, Korolov O, Bartek J, Hodny Z (2016) IFNgamma induces oxidative stress, DNA damage and tumor cell senescence via TGFbeta/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 35(10):1236–1249. doi:10.1038/onc.2015.162

    Article  CAS  PubMed  Google Scholar 

  • Ignotz RA, Massague J (1986) Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261(9):4337–4345

    CAS  PubMed  Google Scholar 

  • Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T (2007) FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun 359(1):108–114. doi:10.1016/j.bbrc.2007.05.067

    Article  CAS  PubMed  Google Scholar 

  • Jenkins G (2008) The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol 40(6–7):1068–1078. doi:10.1016/j.biocel.2007.11.026

    Article  CAS  PubMed  Google Scholar 

  • Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking TGF-[beta]3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11(4):415–421

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 19(8):385–394. doi:10.1016/j.tcb.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  • Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C (2009) Control of transforming growth factor beta signal transduction by small GTPases. FEBS J 276(11):2947–2965

    Article  CAS  PubMed  Google Scholar 

  • Katakura Y, Nakata E, Miura T, Shirahata S (1999) Transforming growth factor beta triggers two independent-senescence programs in cancer cells. Biochem Biophys Res Commun 255(1):110–115. doi:10.1006/bbrc.1999.0129

    Article  CAS  PubMed  Google Scholar 

  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6(6):1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Keski-Oja J, Koli K, von Melchner H (2004) TGF-beta activation by traction? Trends Cell Biol 14(12):657–659. doi:10.1016/j.tcb.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Park GT, Lim YB, Rue SW, Jung JC, Sonn JK, Bae YS, Park JW, Lee YS (2004) Expression of connective tissue growth factor, a biomarker in senescence of human diploid fibroblasts, is up-regulated by a transforming growth factor-beta-mediated signaling pathway. Biochem Biophys Res Commun 318(4):819–825. doi:10.1016/j.bbrc.2004.04.108

    Article  CAS  PubMed  Google Scholar 

  • Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME (2012) Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-beta1. J Biol Chem 287(15):11677–11688. doi:10.1074/jbc.M111.308460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K (2009) Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells. Can Res 69(23):8844–8852. doi:10.1158/0008-5472.CAN-08-4401

    Article  CAS  Google Scholar 

  • Kregar Velikonja N, Urban J, Frohlich M, Neidlinger-Wilke C, Kletsas D, Potocar U, Turner S, Roberts S (2014) Cell sources for nucleus pulposus regeneration. Eur Spine J: Official Pub Eur Spine Soc, Eur Spinal Deformity Soc, Eur Sect Cervical Spine Res Soc 23(Suppl 3):S364–S374. doi:10.1007/s00586-013-3106-9

    Article  Google Scholar 

  • Ksiazek K, Korybalska K, Jorres A, Witowski J (2007) Accelerated senescence of human peritoneal mesothelial cells exposed to high glucose: the role of TGF-beta1. Lab Inv; J Tech Methods Pathol 87(4):345–356. doi:10.1038/labinvest.3700519

    CAS  Google Scholar 

  • Kulkarni AB, Karlsson S (1997) Inflammation and TGF beta 1: lessons from the TGF beta 1 null mouse. Res Immunol 148(7):453–456

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90(2):770–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, Eriksen EF (1997) A sequence variation: 713-8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 20(3):289–294

    Article  CAS  PubMed  Google Scholar 

  • Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P, Xu X, ten Dijke P, Mummery CL, Karlsson S (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20(7):1663–1673. doi:10.1093/emboj/20.7.1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence DA, Pircher R, Jullien P (1985) Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta-TGF under acidic conditions. Biochem Biophys Res Commun 133(3):1026–1034

    Article  CAS  PubMed  Google Scholar 

  • Lee PS, Chang C, Liu D, Derynck R (2003) Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. J Biol Chem 278(30):27853–27863. doi:10.1074/jbc.M301755200

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R (2007) TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26(17):3957–3967. doi:10.1038/sj.emboj.7601818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Park SK, Kwon OS, Won IS, Kim DK, Jung YK, Ku YS, Kim YS, Choi DJ, Kim JH (2011) Genetic polymorphism at codon 10 of the transforming growth factor-beta1 gene in patients with alcoholic liver cirrhosis. Korean J Hepatol 17(1):37–43. doi:10.3350/kjhep.2011.17.1.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB (1994) Maternal rescue of transforming growth factor-beta 1 null mice. Science (New York, N Y) 264(5167):1936–1938

    Article  CAS  Google Scholar 

  • Li J, Pei M (2012) Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Eng Part B, Rev 18(4):270–287. doi:10.1089/ten.TEB.2011.0583

    Article  CAS  Google Scholar 

  • Li B, Khanna A, Sharma V, Singh T, Suthanthiran M, August P (1999a) TGF-beta1 DNA polymorphisms, protein levels, and blood pressure. Hypertension 33(1 Pt 2):271–275

    Article  CAS  PubMed  Google Scholar 

  • Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999b) Defective angiogenesis in mice lacking endoglin. Science (New York, N Y) 284(5419):1534–1537

    Article  CAS  Google Scholar 

  • Li R, Rosendahl A, Brodin G, Cheng AM, Ahgren A, Sundquist C, Kulkarni S, Pawson T, Heldin CH, Heuchel RL (2006) Deletion of exon I of SMAD7 in mice results in altered B cell responses. J Immunol (Baltimore, Md: 1950) 176(11):6777–6784

    Google Scholar 

  • Liakou E, Mavrogonatou E, Pratsinis H, Rizou S, Evangelou K, Panagiotou PN, Karamanos NK, Gorgoulis VG, Kletsas D (2016) Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: the role of TGF-beta. Aging 8(8):1650–1669. doi:10.18632/aging.100989

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S, Yang J, Elkahloun AG, Bandyopadhyay A, Wang L, Cornell JE, Yeh IT, Agyin J, Tomlinson G, Sun LZ (2012) Attenuation of TGF-beta signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Mol Biol Cell 23(8):1569–1581. doi:10.1091/mbc.E11-10-0849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo RS, Massague J (1999) Ubiquitin-dependent degradation of TGF-beta-activated smad2. Nat Cell Biol 1(8):472–478. doi:10.1038/70258

    Article  CAS  PubMed  Google Scholar 

  • Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641

    Article  CAS  PubMed  Google Scholar 

  • Massague J (2008) TGFbeta in Cancer. Cell 134(2):215–230. doi:10.1016/j.cell.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrakis KJ, Andrew RL, Lee KL, Petropoulou C, Dixon JE, Navaratnam N, Norris DP, Episkopou V (2007) Arkadia enhances Nodal/TGF-beta signaling by coupling phospho-Smad2/3 activity and turnover. PLoS Biol 5(3):e67. doi:10.1371/journal.pbio.0050067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCartney-Francis NL, Wahl SM (2002) Dysregulation of IFN-gamma signaling pathways in the absence of TGF-beta 1. J Immunol (Baltimore, Md: 1950) 169(10):5941–5947

    Google Scholar 

  • Moren A, Hellman U, Inada Y, Imamura T, Heldin CH, Moustakas A (2003) Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem 278(35):33571–33582. doi:10.1074/jbc.M300159200

    Article  CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98(10):1512–1520. doi:10.1111/j.1349-7006.2007.00550.x

    Article  CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136(22):3699–3714

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S, Rodriguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5):1104–1118. doi:10.1016/j.cell.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Li E (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393(6687):786–790. doi:10.1038/31693

    Article  CAS  PubMed  Google Scholar 

  • Nomura-Kitabayashi A, Anderson GA, Sleep G, Mena J, Karabegovic A, Karamath S, Letarte M, Puri MC (2009) Endoglin is dispensable for angiogenesis, but required for endocardial cushion formation in the midgestation mouse embryo. Dev Biol 335(1):66–77. doi:10.1016/j.ydbio.2009.08.016

    Article  CAS  PubMed  Google Scholar 

  • Olivieri F, Rippo MR, Monsurro V, Salvioli S, Capri M, Procopio AD, Franceschi C (2013) MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 12(4):1056–1068. doi:10.1016/j.arr.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  • Oshima M, Oshima H, Taketo MM (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179(1):297–302. doi:10.1006/dbio.1996.0259

    Article  CAS  PubMed  Google Scholar 

  • Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D (2012) Autophagy in idiopathic pulmonary fibrosis. PLoS ONE 7(7):e41394. doi:10.1371/journal.pone.0041394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlingeiro RC (2007) Endoglin is required for hemangioblast and early hematopoietic development. Development 134(16):3041–3048. doi:10.1242/dev.002907

    Article  CAS  PubMed  Google Scholar 

  • Pratsinis H, Tsagarakis S, Zervolea I, Giannakopoulos F, Stathakos D, Thalassinos N, Kletsas D (2002) Chronic in vivo exposure to glucocorticoids prolongs cellular lifespan: the case of Cushing’s syndrome-patients’ fibroblasts. Exp Gerontol 37(10–11):1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Pratsinis H, Giannouli CC, Zervolea I, Psarras S, Stathakos D, Kletsas D (2004) Differential proliferative response of fetal and adult human skin fibroblasts to transforming growth factor-beta. Wound Repair Regeneration: Official Publ Wound Healing Soc, Eur Tissue Repair Soc 12(3):374–383. doi:10.1111/j.1067-1927.2004.12305.x

  • Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MWJ, Doetschman T (1995) Transforming growth factor-β3 is required for secondary palate fusion. Nat Genet 11(4). doi:10.1038/ng1295-1409, 10.1038/ng1295-409

  • Rajawat YS, Hilioti Z, Bossis I (2009) Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 8(3):199–213. doi:10.1016/j.arr.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Radical Res 40(12):1230–1238. doi:10.1080/10715760600911303

    Article  CAS  Google Scholar 

  • Roberts AB, Lamb LC, Newton DL, Sporn MB, De Larco JE, Todaro GJ (1980) Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc Natl Acad Sci U S A 77(6):3494–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AB, McCune BK, Sporn MB (1992) TGF-beta: regulation of extracellular matrix. Kidney Int 41(3):557–559

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K (2009) SIRT1: regulation of longevity via autophagy. Cell Signal 21(9):1356–1360. doi:10.1016/j.cellsig.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  • Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124(13):2659–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller M, Javelaud D, Mauviel A (2004) TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 35(2):83–92

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  PubMed  Google Scholar 

  • Shibanuma M, Mashimo J, Kuroki T, Nose K (1994) Characterization of the TGF beta 1-inducible hic-5 gene that encodes a putative novel zinc finger protein and its possible involvement in cellular senescence. J Biol Chem 269(43):26767–26774

    CAS  PubMed  Google Scholar 

  • Shibanuma M, Mochizuki E, Maniwa R, Mashimo J, Nishiya N, Imai S, Takano T, Oshimura M, Nose K (1997) Induction of senescence-like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized human fibroblasts. Mol Cell Biol 17(3):1224–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699. doi:10.1038/359693a0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12(1):107–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AL, Robin TP, Ford HL (2012) Molecular pathways: targeting the TGF-beta pathway for cancer therapy. Clin Cancer Res: Official J Am Assoc Cancer Res 18(17):4514–4521. doi:10.1158/1078-0432.CCR-11-3224

    Article  CAS  Google Scholar 

  • Sporn MB, Roberts AB (1992) Transforming growth factor-beta: recent progress and new challenges. J Cell Biol 119(5):1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Stathakos D, Psarras S, Kletsas D (1993) Stimulation of human embryonic lung fibroblasts by TGF-beta and PDGF acting in synergism. The role of cell density. Cell Biol Int 17(1):55–64. doi:10.1006/cbir.1993.1005

    Article  CAS  PubMed  Google Scholar 

  • Stenvers KL, Tursky ML, Harder KW, Kountouri N, Amatayakul-Chantler S, Grail D, Small C, Weinberg RA, Sizeland AM, Zhu HJ (2003) Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos. Mol Cell Biol 23(12):4371–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storer M, Keyes WM (2014) Developing senescence to remodel the embryo. Communicative Integr Biol 7(5). doi:10.4161/cib.29098

  • Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155(5):1119–1130. doi:10.1016/j.cell.2013.10.041

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA (1999) SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling. Proc Natl Acad Sci U S A 96(22):12442–12447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P (2000) Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: a novel mediator of hypertension and/or target organ damage. Proc Natl Acad Sci U S A 97(7):3479–3484. doi:10.1073/pnas.050420897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thannickal VJ, Fanburg BL (1995) Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 270(51):30334–30338

    Article  CAS  PubMed  Google Scholar 

  • Thannickal VJ, Hassoun PM, White AC, Fanburg BL (1993) Enhanced rate of H2O2 release from bovine pulmonary artery endothelial cells induced by TGF-beta 1. Am J Physiol 265(6 Pt 1):L622–L626

    CAS  PubMed  Google Scholar 

  • Tian M, Schiemann WP (2009) The TGF-beta paradox in human cancer: an update. Fut Oncol 5(2):259–271. doi:10.2217/14796694.5.2.259

    Article  CAS  Google Scholar 

  • Tojo M, Takebe A, Takahashi S, Tanaka K, Imamura T, Miyazono K, Chiba T (2012) Smad7-deficient mice show growth retardation with reduced viability. J Biochem 151(6):621–631. doi:10.1093/jb/mvs022

    Article  CAS  PubMed  Google Scholar 

  • Tremain R, Marko M, Kinnimulki V, Ueno H, Bottinger E, Glick A (2000) Defects in TGF-beta signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras. Oncogene 19(13):1698–1709. doi:10.1038/sj.onc.1203471

    Article  CAS  PubMed  Google Scholar 

  • Tsakiri EN, Trougakos IP (2015) The amazing ubiquitin-proteasome system: structural components and implication in aging. Int Rev Cell Mol Biol 314:171–237. doi:10.1016/bs.ircmb.2014.09.002

    Article  PubMed  Google Scholar 

  • Wahl SM (1992) Transforming growth factor beta (TGF-beta) in inflammation: a cause and a cure. J Clin Immunol 12(2):61–74

    Article  CAS  PubMed  Google Scholar 

  • Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ (1998) Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92(6):797–808

    Article  CAS  PubMed  Google Scholar 

  • Walenda G, Abnaof K, Joussen S, Meurer S, Smeets H, Rath B, Hoffmann K, Frohlich H, Zenke M, Weiskirchen R, Wagner W (2013) TGF-beta1 does not induce senescence of multipotent mesenchymal stromal cells and has similar effects in early and late passages. PLoS ONE 8(10):e77656. doi:10.1371/journal.pone.0077656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan M, Cao X, Wu Y, Bai S, Wu L, Shi X, Wang N, Cao X (2002) Jab1 antagonizes TGF-beta signaling by inducing Smad4 degradation. EMBO Rep 3(2):171–176. doi:10.1093/embo-reports/kvf024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Han G, Owens P, Siddiqui Y, Li AG (2006) Role of TGF beta-mediated inflammation in cutaneous wound healing. J Invest Dermatol Symp Proc 11(1):112–117

    Article  CAS  Google Scholar 

  • Ward WF (2002) Protein degradation in the aging organism. Prog Mol Subcell Biol 29:35–42

    Article  CAS  PubMed  Google Scholar 

  • Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX (1998) Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A 95(16):9378–9383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hultquist A, Hydbring P, Cetinkaya C, Oberg F, Larsson LG (2009) TGF-beta enforces senescence in Myc-transformed hematopoietic tumor cells through induction of Mad1 and repression of Myc activity. Exp Cell Res 315(18):3099–3111. doi:10.1016/j.yexcr.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Niu J, Li X, Wang X, Guo Z, Zhang F (2014) TGF-beta1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. BMC Dev Biol 14:21. doi:10.1186/1471-213X-14-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu TT, Li WM, Yao YM (2016) Interactions between Autophagy and Inhibitory Cytokines. Int J Biol Sci 12(7):884–897. doi:10.7150/ijbs.15194

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Miyauchi A, Goto J, Takagi Y, Okuizumi H, Kanematsu M, Hase M, Takai H, Harada A, Ikeda K (1998) Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Mineral Res: Official J Am Soc Bone Mineral Res 13(10):1569–1576. doi:10.1359/jbmr.1998.13.10.1569

    Article  CAS  Google Scholar 

  • Yang X, Li C, Xu X, Deng C (1998) The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A 95(7):3667–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18(5):1280–1291. doi:10.1093/emboj/18.5.1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227. doi:10.1016/j.it.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon G, Kim HJ, Yoon YS, Cho H, Lim IK, Lee JH (2002) Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem J 366(Pt 2):613–621. doi:10.1042/BJ20011445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura A, Wakabayashi Y, Mori T (2010) Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem 147(6):781–792. doi:10.1093/jb/mvq043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AR, Narita M (2010) Connecting autophagy to senescence in pathophysiology. Curr Opin Cell Biol 22(2):234–240. doi:10.1016/j.ceb.2009.12.005

    Article  CAS  PubMed  Google Scholar 

  • Young DG, Skibinski G, Mason JI, James K (1999) The influence of age and gender on serum dehydroepiandrosterone sulphate (DHEA-S), IL-6, IL-6 soluble receptor (IL-6 sR) and transforming growth factor beta 1 (TGF-beta1) levels in normal healthy blood donors. Clin Exp Immunol 117(3):476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng G, McCue HM, Mastrangelo L, Millis AJ (1996) Endogenous TGF-beta activity is modified during cellular aging: effects on metalloproteinase and TIMP-1 expression. Exp Cell Res 228(2):271–276. doi:10.1006/excr.1996.0326

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Laiho M (2003) On and off: proteasome and TGF-beta signaling. Exp Cell Res 291(2):275–281

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Monkkonen M, Roth S, Laiho M (2002) Proteasomal activity modulates TGF-ss signaling in a gene-specific manner. FEBS Lett 527(1–3):58–62

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94(6):703–714

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Kletsas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pratsinis, H., Mavrogonatou, E., Kletsas, D. (2017). TGF-β in Development and Ageing. In: Rattan, S., Sharma, R. (eds) Hormones in Ageing and Longevity. Healthy Ageing and Longevity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-63001-4_7

Download citation

Publish with us

Policies and ethics