Skip to main content

Crossing Boundaries in Mathematical Modelling and Applications Educational Research and Practice

  • Chapter
  • First Online:
Mathematical Modelling and Applications

Abstract

This chapter gives an overview on the current state-of-the-art on the teaching and learning of mathematical modelling and applications and its contribution to educational research and practice which is reflected in the various contributions in this book. Several chapter authors use the opportunity to strengthen and build our research practices by reaching out to others in educational research, beyond the boundaries of our community, and those in fields other than education. By researchers recognising boundaries in applications and modelling research that limit our vision and what we are currently able to do, a more entrepreneurial view of research groups could lead to the brokerage of knowledge in multidisciplinary or multi-community teams to work on some of the more perplexing research questions that have faced our research community. Fluid social alliances in research groups that coalesce and then disperse could result in a much wider dissemination of knowledge both to, and from, our community in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Andresen, M., & Petersen, A. (2011). Modelling chemical equilibrium in school mathematics with technology. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 519–528). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ärlebäck, J. B., & Bergsten, C. (2010). On the use of realistic Fermi problems in introducing mathematical modelling in upper secondary mathematics. In R. Lesh, P. Galbraith, C. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 597–609). New York: Springer.

    Chapter  Google Scholar 

  • Ärlebäck, J., & Frejd, P. (2013). Modelling from the perspective of commognition – an emerging framework. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 47–56). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Berry, J. S., Burghes, D. N., Huntley, I. D., James, D. J. G., & Moscardini, A. O. (Eds.). (1984). Mathematical modelling methodology, models and micros. Chichester: Horwood.

    Google Scholar 

  • Bishop, J. L. (2013). A controlled study of the flipped classroom with numerical methods for engineers. Doctor of Philosophy in Engineering Education dissertation, Utah State University.

    Google Scholar 

  • Blomhoej, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and Its Applications, 22(3), 123–139.

    Article  Google Scholar 

  • Blum, W. (2008). Opportunities and problems for “Quality Mathematics Teaching”—the SINUS and DISUM projects [regular lecture]. In M. Niss (Ed.), Proceedings of 10th International Congress on Mathematical Education, 4–11 July, 2004 [CD]. Roskilde: IMFUFA, Roskilde University.

    Google Scholar 

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12), education, engineering and economics (pp. 222–231). Chichester: Horwood.

    Chapter  Google Scholar 

  • Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. New York: Springer.

    Google Scholar 

  • Borba, M., & Gadanidis, G. (2008). Virtual communities and networks of practicing mathematics teachers—the role of technology in collaboration. In K. Krainer & T. Wood (Eds.), Participants in mathematics teacher education (pp. 181–206). Rotterdam: Sense.

    Google Scholar 

  • Brinkmann, A., & Brinkmann, K. (2007). Integration of energy issues in mathematics classrooms. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling(ICTMA12): Education, engineering and economics (pp. 304–313). Chichester: Horwood.

    Chapter  Google Scholar 

  • Burkhardt, H. (2014). Curriculum design and systemic change. In Y. Li & G. Lappan (Eds.), Mathematics curriculum in school education (pp. 13–34). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Busse, A. (2011). Upper secondary students’ handling of real-world contexts. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. A. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 37–46). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Clements, R. R. (1986). Mathematical modelling using dynamic simulation. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, & A. O. Moscardini (Eds.), Mathematical modelling methodology, models and micros (pp. 238–248). Chichester: Horwood.

    Google Scholar 

  • Collis, K. F., & Watson, J. M. (1991). A mapping procedure for analysing the structure of mathematics responses. Journal of Structural Learning, 11(1), 65–87.

    Google Scholar 

  • Council of Chief State School Officers. (2010). Common core state standards for mathematics. Council of Chief State School Officers: Washington, DC. Retrieved from http://www.corestandards.org/Math/.

    Google Scholar 

  • Daher, W., & Shahbari, A. (2015). Pre-service teachers’ modelling processes through engagement with model eliciting activities with a technological tool. International Journal of Science and Mathematics Education, 13(1), 25–46.

    Article  Google Scholar 

  • De Bock, D., Van Reeth, D., Minne, J., & Van Dooren, W. (2014). Students’ overreliance on linearity in economic thinking: An exploratory study at the tertiary level. International Review of Economics Education, 16, 111–121.

    Article  Google Scholar 

  • Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14, 133–156.

    Article  Google Scholar 

  • Engeström, Y., Engeström, R., & Kärkkäinen, M. (1995). Polycontextuality and boundary crossing in expert cognition: Learning and problem solving in complex work activities. Learning and Instruction, 5(4), 319–336.

    Article  Google Scholar 

  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3). doi:10.1186/s40594-016-0036-1.

  • English, L., & Gainsburg, J. (2016). Problem solving in a 21st-century mathematics curriculum. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 313–335). New York: Taylor & Francis.

    Google Scholar 

  • FitzSimons, G., & Mitsui, T. (2013). Education/training with industry participation. In A. Damlamian, J. F. Rodrigues, & R. Sträßer (Eds.), Educational interfaces between mathematics and industry (pp. 95–107). Cham: Springer.

    Chapter  Google Scholar 

  • Galbraith, P. L. (2013). From conference to community: An ICTMA journey – the Ken Houston inaugural lecture. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 349–360). Dordrecht: Springer.

    Google Scholar 

  • Garraway, J. (2010). Knowledge boundaries and boundary-crossing in the design of work-responsive curricula. Teaching in Higher Education, 15(2), 211–222.

    Article  Google Scholar 

  • Gibson, J. J. (2015). The ecological approach to visual perception (Classic ed.). New York: Routledge.

    Google Scholar 

  • Greefrath, G., & Vorhölter, K. (2016). Teaching and learning mathematical modelling: Approaches and developments from German speaking countries. ICME-13 topical survey. Cham: Springer.

    Book  Google Scholar 

  • Haines, C., Crouch, R., & Davis, J. (2000). Mathematical modelling skills: A research instrument, Technical Report No. 55. Hatfield: University of Hertfordshire, Department of Mathematics.

    Google Scholar 

  • Hatton, N., & Smith, D. (1995). Reflection in teacher education: Towards definition and implementation. Teaching and Teacher Education, 11(1), 33–49.

    Article  Google Scholar 

  • Jain, S., Lange, S., & Zilles, S. (2006). Towards a better understanding of incremental learning. In J. L. Balcázar, P. M. Long, & F. Stephan (Eds.), ALT2006: Algorithmic learning theory (pp. 169–183). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Jensen, J. H., Niss, M., & Jankvist, U. T. (2017). Problem solving in the borderland between mathematics and physics. International Journal of Mathematical Education in Science and Technology, 48(1), 1–15.

    Article  Google Scholar 

  • Kaiser, G., & Brand, S. (2015). Modelling competencies: Past development and further perspectives. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 129–149). Cham: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 277–293). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kyriakides, A. O., Meletiou-Mavrotheris, M., & Prodromou, T. (2016). Mobile technologies in the service of students’ learning of mathematics: The example of game application A.L.E.X in the context of a primary school in Cyprus. Mathematics Education Research Journal, 28(1), 1–7.

    Article  Google Scholar 

  • LaPointe, D. (2008). Will games and emerging technologies influence the learning landscape? In J. Visser & M. Visser-Valfrey (Eds.), Learners in a changing learning landscape (pp. 227–249). New York: Springer.

    Chapter  Google Scholar 

  • Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2–3), 157–189.

    Article  Google Scholar 

  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research in design in mathematics and science education (pp. 591–645). Mahwah: Erlbaum.

    Google Scholar 

  • Lovriv, M. (2017). Tensions between mathematics and science disciplines: Creative opportunities to enrich teaching mathematics and science. In Discussions on university science teaching: Proceedings of the Western Conference on Science Education (Vol. 1(17)). Available from http://ir.lib.uwo.ca/wcsedust/vol1/iss1/17

  • Maass, J., & Schlöglmann, W. (1991). Technology transfer – a didactical problem? In M. Niss, W. Blum, & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp. 103–110). Chichester: Horwood.

    Google Scholar 

  • Matsuzaki, A. (2011). Using response analysis mapping to display modellers’ mathematical modelling progress. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 499–508). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Matsuzaki, A., & Saeki, A. (2013). Evidence of a dual modelling cycle: Through a teaching practice example for pre-service teachers. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 195–205). Dordrecht: Springer.

    Google Scholar 

  • Mercer, N., & Howe, C. (2012). Explaining the dialogic processes of teaching and learning: The value and potential of sociocultural theory. Learning, Culture and Social Interaction, 1, 12–21.

    Article  Google Scholar 

  • OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. Paris: OECD Publishing.

    Book  Google Scholar 

  • Pea, R. D. (2004). Commentary: The social and technological dimensions of scaffolding and related theoretical concepts for learning, education and human activity. The Journal of the Learning Sciences, 13(3), 423–451.

    Article  Google Scholar 

  • Puig, L., & Monzó, O. (2013). Fenómenos y ajustes. Un modelo de enseñanza del proceso de modelización y los conceptos de parámetro y familia de funciones. In T. Rojano (Ed.), Las tecnologías digitales en la enseñanza de las matemáticas (pp. 9–35). México: Trillas.

    Google Scholar 

  • Rosa, M., & Orey, D. C. (2013). Ethnomodelling as a research lens on ethnomathematics and modelling. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 77–88). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Schmidt-Weigand, F., & Fuccia, D. (2014). Mathematical models in chemistry lessons. In Pixel (Ed.), New perspectives in science education (3rd ed., pp. 313–317). Padova: Liberiauniversitaria.it.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Siller, H.-S., & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth congress of the European Society for Research in Mathematics Education (CERME 6). France: Lyon.

    Google Scholar 

  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19–28.

    Google Scholar 

  • Star, S. L. (2010). This is not a boundary object: Reflections on the origin of a concept. Science, Technology & Human Values, 35(5), 601–617.

    Article  Google Scholar 

  • Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkley’s Museum of Vertebrate Zoology, 1907–39. Social Studies of Science, 19(3), 387–420.

    Article  Google Scholar 

  • Stillman, G. (2002). Assessing higher order mathematical thinking through applications. Unpublished thesis for Doctor of Philosophy, University of Queensland.

    Google Scholar 

  • Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. In J. Watson & K. Beswick (Eds.), Proceedings of 30th annual conference of mathematics education research group of Australasia (pp. 688–707). Adelaide: MERGA.

    Google Scholar 

  • Sullivan, P., Zevenbergen, R., & Mousley, J. (2003). The contexts of mathematics tasks and the context of the classroom: Are we including all students? Mathematics Education Research Journal, 15(2), 107–121.

    Article  Google Scholar 

  • Swan, M. (1991). Mathematical modelling for all. In M. Niss, W. Blum, & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp. 137–146). Chichester: Horwood.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Ann Stillman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stillman, G.A., Blum, W., Kaiser, G. (2017). Crossing Boundaries in Mathematical Modelling and Applications Educational Research and Practice. In: Stillman, G., Blum, W., Kaiser, G. (eds) Mathematical Modelling and Applications. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-62968-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62968-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62967-4

  • Online ISBN: 978-3-319-62968-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics