Skip to main content

Fundamental Frameworks in Planetary Mapping: A Review

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

In this chapter, we review basic concepts, measurements, and methods in mapping topographic and reflectance (image) data of planetary surfaces. This includes the definition of coordinate systems for each body, the identification of the shape of a planetary body, and the establishment of reference systems and reference bodies that are required to produce horizontally and vertically accurate representations of a planetary surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://astrogeology.usgs.gov/Projects/WGCCRE.

References

  • Acton C (1996) Ancillary data services of NASA’s navigation and ancillary information facility. Planet Space Sci 44:65–70

    Article  Google Scholar 

  • Aeschliman R (1998) Topographic map of the Guinevere Planitia of Venus. V10M 30/240 RTK, USGS

    Google Scholar 

  • Archinal B, Becker T, Lee E, Edmundson K (2013) Initial global control network and mosaicking of ISS Images of titan. In: 44th lunar and planetary science conference, p 2957

    Google Scholar 

  • Archinal BA, Lee EM, Kirk RL, Duxbury TC, Sucharski RM, Cook DA, Barrett JM (2004) A new mars digital image model (MDIM 2.1) control network. ISPRS Working Group IV/p Workshop

    Google Scholar 

  • Archinal BA et al (2010) Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest Mech Dyn Astr. https://doi.org/10.1007/s10569-010-9320-4

    Article  Google Scholar 

  • Archinal BA, A’Hearn MF, Bowell E, Conrad A, Consolmagno GJ, Courtin R, Fukushima T, Hestroffer D, Hilton JL, Krasinsky GA, Neumann G, Oberst J, Seidelmann PK, Stooke P, Tholen DJ, Thomas PC, Williams IP (2011) Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2009. Celest Mech Dyn Astr 109(2):101–135

    Google Scholar 

  • Batson RM (1990) Map formats and projections used in planetary cartography. In: Greeley R, Barson RM (eds) Planetary mapping. Cambridge University Press, Cambridge

    Google Scholar 

  • Batson RM (1973) Cartographic products from the mariner 9 mission. J Geophys Res 78(20):4424–4435

    Article  Google Scholar 

  • Becker TL, Geissler PE (2005) Galileo global color mosaics of Io. In: Lunar and planetary institute science conference abstracts, vol 36. http://www.lpi.usra.edu/meetings/lpsc2005/pdf/1862.pdf

  • Becker TL, Archinal B, Colvin TR, Davies ME, Gitlin A, Kirk RL, Weller L (2001) Final digital global maps of Ganymede, Europa, and Callisto, in Lunar and Planetary Science Conference XXXII: Houston, Lunar and Planetary Institute, abs. no. 2009

    Google Scholar 

  • Becker TL et al (2016) Completed global control network and Basemap of Enceladus. In: Lunar and Planetary Science Conference XLVII, Abs. #2342. http://www.hou.usra.edu/meetings/lpsc2016/pdf/2342.pdf

  • Belton MJS, Klaasen KP, Clary MC, Anderson JL, Anger CD, Carr MH, Chapman CR, Davies ME, Greeley R, Anderson D (1992) The Galileo solid-state imaging experiment. Space Sci Rev 60. https://doi.org/10.1007/bf00216864

  • Bills BG (2005) Variations in the rotation rate of Venus due to orbital eccentricity modulation of solar tidal torques. J Geophys Res 110, E11007. https://doi.org/10.1029/2003je002190

  • Burba GA (1996) Cartographic aspects of Venus global geologic mapping at 1:10,000,000 scale. Vernadskiy-Brown Micro 24 abstracts 11

    Google Scholar 

  • Burmeister S, Willner K, Schmidt V, Oberst J (2018) Determination of Phobos’ rotational parameters by an inertial frame bundle block adjustment. J Geodesy 1–11. https://doi.org/10.1007/s00190-018-1112-8

    Article  Google Scholar 

  • Cheng AF et al (2008) Long-range reconnaissance imager on new horizons. Space Sci Rev 140:189–215

    Article  Google Scholar 

  • Christensen PR et al (2001) Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J Geophys Res 106:23823–23872

    Article  Google Scholar 

  • Costa M (2017) SPICE for ESA planetary missions. EPSC Abstracts, vol 11, EPSC2017-654-1

    Google Scholar 

  • Dermott SF, Thomas PC (1987) The shape and internal structure of mimas. Icarus 73:25–65

    Article  Google Scholar 

  • Duxbury TC, Kirk RL, Archinal BA, Neumann GA (2002) Mars geodesy/cartography working group recommendations on mars cartographic constants and coordinate systems. ISPRS, vol 34, part 4, “Geospatial Theory, Processing and Applications,” Ottawa

    Google Scholar 

  • Edwards CS, Nowicki, KJ, Christensen, PR, Hill, J, Gorelick, N, Murray, K (2011) Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J Geophys Res 116:E10008. https://doi.org/10.1029/2010je003755

  • Elachi C et al (2005) Cassini radar views the surface of Titan. Science 308:970–974

    Article  Google Scholar 

  • Eliason E, Isbell C, Lee E, Becker T, Gaddis L, McEwen A, Robinson, M (1999) Mission to the Moon: the clementine UVVIS global lunar mosaic, PDS Volumes USA_NASA_PDS_CL_4001 through 4078, produced by the U.S. Geological Survey and distributed on CD media by the Planetary Data System

    Google Scholar 

  • Fergason RL, Lee EM, Weller L (2013) THEMIS geodetically controlled Mosaics of Mars, 44th Lunar and Planetary Science Conference, The Woodlands, TX, Abstract #1642

    Google Scholar 

  • Ford PG (1992) MGN V RDRS 5 global data record reflectivity V1.0, MGN-V-RDRS-5-GDR-REFLECTIVITY-V1.0, NASA planetary data system from cassini-ISS images. Planet Space Sci 57:83–92

    Google Scholar 

  • Gaddis L, Barrett J, Laura J, Milazzo M (2015) USGS ISIS tools supporting lunar selene “Kaguya” data from terrain camera, multiband imager and spectral profiler instruments. In: Second Planetary Data Workshop, 7040

    Google Scholar 

  • Gaddis LR, Sucharski, T, Becker, T, Gitlin, A (2001) Cartographic processing of digital lunar orbiter data, LPS XXXII, abs. #1892. http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1892.pdf

  • Gwinner K, Jaumann R, Hauber E, Hoffmann H, Heipke C, Oberst J, Neukum G, Ansan V, Bostelmann J, Dumke A, Elgner S, Erkeling G, Fueten F, Hiesinger H, Hoekzema NM, Kersten E, Loizeau D, Matz KD, McGuire PC, Mertens V, Michael G, Pasewaldt A, Pinet P, Preusker F, Reiss D, Roatsch T, Schmidt R, Scholten F, Spiegel M, Stesky R, Tirsch D, van Gasselt S, Walter S, Wählisch M, Willner K (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet Space Sci 126:93–138. https://doi.org/10.1016/j.pss.2016.02.014

    Article  Google Scholar 

  • Gwinner K, Scholten F, Preusker F, Elgner S, Roatsch T, Spiegel M, Schmidt R, Oberst J, Jaumann R, Heipke C (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth Planet Sci Lett 294:506–519. https://doi.org/10.1016/j.epsl.2009.11.007

    Article  Google Scholar 

  • Gwinner K, Scholten F, Spiegel M, Schmidt R, Giese B, Oberst J, Heipke C, Jaumann R, Neukum G (2009) Derivation and validation of high-resolution digital terrain models from Mars Express HRSC-Data. PE&RS 75:1127–1142

    Google Scholar 

  • Hare TM, Archinal BA, Becker TL, Lee EM, Gaddis LR, Redding BL, Rosiek MR (2008) Clementine mosaics warped to ULCN 2005 network, LPSC XXXIX, abstract#2337

    Google Scholar 

  • Hare TM et al (2013) Map projection web service for PDS images. LPSC XLIV, abstract 2068

    Google Scholar 

  • Haruyama J, Matsunaga T, Ohtake M, Morota T, Honda C, Yokota Y, Torii M, Ogawa Y (2008) Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planets Space 60:243–255

    Article  Google Scholar 

  • Hawkins SE III et al (2007) The mercury dual imaging system on the MESSENGER spacecraft. Space Sci Rev 131:247–338. https://doi.org/10.1007/s11214-007-9266-3

    Article  Google Scholar 

  • IAU (1971) Commission 16: physical study of planets and satellites. In: Proceedings of the 14th General Assembly, Brighton 1970. Trans Int Astron Union 14B:128–137

    Google Scholar 

  • Isbell C, Gaddis L, Garcia P, Hare T, Bailen M (2014) Kaguya terrain camera mosaics. In: 45th lunar and planetary science conference 2268

    Google Scholar 

  • Jacobson RA, Konopliv AS, Park RS, Folkner WM (2018) The rotational elements of Mars and its satellites. Planet Space Sci 152:107–115. https://doi.org/10.1016/j.pss.2017.12.020

    Article  Google Scholar 

  • Jacobson RA, Lainey V (2014) Martian satellite orbits and ephemerides. Planet Space Sci 102:35–44. https://doi.org/10.1016/j.pss.2013.06.003

    Article  Google Scholar 

  • Jaumann R, Neukum G, Behnke T, Duxbury TC, Eichentopf K, Flohrer J, Gasselt SV, Giese B, Gwinner K, Hauber E, Hoffmann H, Hoffmeister A, Köhler U, Matz K-D, McCord TB, Mertens V, Oberst J, Pischel R, Reiss D, Ress E, Roatsch T, Saiger P, Scholten F, Schwarz G, Stephan K, Wählisch M (2007) The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet Space Sci 55:928–952

    Article  Google Scholar 

  • Kim JR, Muller J-P (2008) Very high resolution stereo DTM extraction and its application to surace roughness estimation over Martian surface. Int Arch Photogram Remote Sens Spatial Inf Sci. XXXVII(B4):993–998

    Google Scholar 

  • Kirk RL, Howington-Kraus E, Redding B, Galuszka D, Hare TM, Archinal BA, Soderblom LA, Barrett JM (2003) High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. J Geophys Res 108(E12):8088. https://doi.org/10.1029/2003JE002131

    Article  Google Scholar 

  • Laura JR, Hare TM, Gaddis LR, Fergason RL, Skinner JA, Hagerty JJ, Archinal BA (2017) Towards a planetary spatial data infrastructure. ISPRS Int J Geo-Inf 6:181

    Article  Google Scholar 

  • Lee EM, Gaddis LR, Weller L, Richie JO, Becker T, Shinaman J, Rosiek MR, Archinal BA, USG (2009) A new clementine basemap of the Moon. In: Lunar and planetary science conference XL, Houston, TX. http://www.lpi.usra.edu/meetings/lpsc2009/pdf/2445.pdf

  • Li C, Ren X et al (2010) Laser altimetry data of Chang’E-1 and the global lunar DEM model. Sci China Earth Sci 53(11):1582–1593

    Article  Google Scholar 

  • Melosh JH (2011) Planetary surface processes. Cambridge University Press, New York

    Book  Google Scholar 

  • Michael GG, Walter SHG, Kneissl T, Zuschneid W, Gross C, McGuire PC, Dumke A, Schreiner B, van Gasselt S, Gwinner K, Jaumann R (2016) Systematic processing of Mars Express HRSC panchromatic and colour image mosaics: image equalisation using an external brightness reference. Planet Space Sci 121:18–26. https://doi.org/10.1016/j.pss.2015.12.002

    Article  Google Scholar 

  • Moore JM et al (2016) The geology of Pluto and Charon through the eyes of New Horizons. Science 351(6279):1284–1293. https://doi.org/10.1126/science.aad7055 https://arxiv.org/abs/1604.05702

    Article  Google Scholar 

  • Moratto ZM, Broxton MJ, Beyer RA, Lundy M, Husmann K (2010) Ames stereo pipeline, NASA’s open source automated stereogrammetry software. In: LPSC, vol 41, p 2364

    Google Scholar 

  • NAIF (2017) An overview of reference frames and coordinate systems in the SPICE context. Navigation and Ancillary Information Facility. https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf

  • Oberst J, Elgner S, Turner FS, Perry ME, Gaskell RW, Zuber MT, Robinson MS, Solomon SC (2011) Radius and limb topography of Mercury obtained from images acquired during the MESSENGER flybys. Planet Space Sci 59:1918–1924. https://doi.org/10.1016/j.pss.2011.07.003

    Article  Google Scholar 

  • Ohtake M, Pieters CM, Isaacson P, Besse S, Yokota Y, Matsunaga T, Boardman J, Yamomoto S, Haruyama J, Staid M, Mall U, Green RO (2013) One Moon, many measurements 3: spectral reflectance. Icarus 226(1):364–374

    Article  Google Scholar 

  • PDS (2008) PDS standards reference, chapter 2. Cartographic standards. Draft: v. 4.3, 12.10.08. https://pds.jpl.nasa.gov/documents/sr/stdref3.7/Chapter2_20081210_v4_3_final_rev.pdf

  • Perry ME et al (2011) Measurement of the radius of Mercury by radio occultation during the MESSENGER flybys. Planet Space Sci. https://doi.org/10.1016/j.pss.2011.07.022

    Article  Google Scholar 

  • Pettengill GH, Eliason E, Ford PG, Loriot GB, Masursky H, McGill GE (1980) Pioneer venus radar results: altimetry and surface properties. J Geophys Res 85(A13):8261–8270

    Article  Google Scholar 

  • Preusker F et al (2017) The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astron Astrophys 607. https://doi.org/10.1051/0004-6361/201731798

    Article  Google Scholar 

  • Rizvanov NG, Nefed’ev YA, Kibardina, MI (2007) Research on selenodesy and dynamics of the Moon in Kazan. Solar Syst Res 41(2):140–149

    Google Scholar 

  • Roatsch T, Wählisch M, Hoffmeister A, Kersten E, Matz K-D, Scholten F, Wagner R, Denk T, Neukum F, Helfenstein P, Porco C (2009) High-resolution Atlases of Mimas, Tethys, and iapetus derived from Cassini-ISS images. Planet Space Sci 57(1):83–92

    Article  Google Scholar 

  • Roatsch T, Wählisch M, Scholten F, Hoffmeister A, Neukum F, Porco C (2006) Mapping of the icy saturnian satellites. ISPRS XXXVI Commission IV, WG IV/7

    Google Scholar 

  • Roatsch T, Kersten E, Wählisch M, Hoffmeister A, Matz K-D, Scholten F, Wagner R, Denk T, Neukum G, Porco CC (2012) High-resolution atlas of Rhea derived from Cassini-ISS images. Planet Space Sci 61(1):135–141

    Article  Google Scholar 

  • Russell CT, Raymond CA (2011) The dawn mission to vesta and ceres. Space Sci Rev 163(1–4):3–23. https://doi.org/10.1007/s11214-011-9836-2

    Article  Google Scholar 

  • Sato H, Robinson MS, Hapke B, Denevi BW, Boyd AK (2014) Resolved Hapke parameter maps of the Moon. J Geophys Res: Planets 119:1775–1805. https://doi.org/10.1002/2013je004580

    Google Scholar 

  • Saunders RS, Pettengill GH, Arvidson RE, Sjogren WL, Johnson WTK, Pieri L (1990) The magellan venus radar mapping mission. J Geophys Res 95(B6):8339–8355. https://doi.org/10.1029/JB095iB06p08339

    Article  Google Scholar 

  • Schenk PM (2008) Cartographic and topographic mapping of the icy satellites of the outer solar system. ISPRS XXXVII Commission IV, WG IV/7

    Google Scholar 

  • Scholten F, Gwinner K, Roatsch T et al (2005) Mars Express HRSC data processing – methods and operational aspects. Photogram Eng Remote Sens 71(10):1143–1152

    Article  Google Scholar 

  • Seidelmann PK, Abalakin VK, Bursa M, Davies ME, De Bergh C, Lieske JH, Oberst J, Simon JL, Standish EM, Stooke P, Thomas PC (2002) Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets, and satellites: 2000. Celest Mech Dyn Astr 82:83–110

    Article  Google Scholar 

  • Shan J, Yoon J, Lee DS, Kirk RL, Neumann GA, Acton CH (2005) Photogrammetric analysis of the mars global surveyor mapping data. Photogram Eng Remote Sens 71:97–108

    Article  Google Scholar 

  • Shevchenko V, Rodionova Z, Michael G (2016) Lunar and planetary cartography in Russia. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-21039-1

    Book  Google Scholar 

  • Sidiropoulos P, Muller J-P (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planet Space Sci 117:207–222

    Article  Google Scholar 

  • Sidiropoulos P, Muller J-P (2018) A systematic solution to multi-instrument co-registration of high-resolution planetary images to an orthorectified baseline. IEEE Trans Geosci Remote Sens 56(1):78–92

    Article  Google Scholar 

  • Simonelli DP, Thomas PC, Carcich BT, Veverka J (1993) The generation and use of numerical shape models for irregular solar system objects. Icarus 103:49–61

    Article  Google Scholar 

  • Smith DE et al (2010) The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci Rev. https://doi.org/10.1007/s11214-009-9512-y

    Article  Google Scholar 

  • Smith DE, Zuber MT, Solomon SC, Phillips RJ, Head JW, Garvin JB, Banerdt WB, Muhleman DO, Pettengill GH, Neumann GA, Lemoine FG, Abshire JB, Aharonson O, Brown CD, Hauck SA, Ivanov AB, McGovern PJ, Zwally HJ, Duxbury TC (1999) The global topography of Mars and implications for surface evolution. Science 284:1495–1503

    Article  Google Scholar 

  • Speyerer EJ, Robinson MS, Denevi BW, The LROC Science Team (2011) Lunar reconnaissance orbiter camera global morphological map of the Moon. In: Lunar planetary science conference, abstract #2387. https://www.lpi.usra.edu/meetings/lpsc2011/pdf/2387.pdf

  • Snyder JP (1987) Map projections–a working manual, U.S. Government Printing Office, U.S. Geological Survey professional paper, no 1395, vol 1395

    Google Scholar 

  • Stark A, Willner K, Burmeister S, Oberst J (2017) Geodetic framework for martian satellite exploration i: reference rotation models. In: European Planetary Science Congress 11

    Google Scholar 

  • Stephan K et al (2009) Mapping products of Titan’s surface. In: Brown RH, Dougherty M (eds) Titan From Cassini-Huygens. Springer, New York, pp 489–510

    Chapter  Google Scholar 

  • Stooke P (2012) Stooke small bodies maps V2.0. MULTI-SA-MULTI-6-STOOKEMAPS-V2.0. NASA Planetary Data System

    Google Scholar 

  • Thomas P (1987) Limb topography of Uranian satellites. LPSC XVIII 1010-1011

    Google Scholar 

  • USGS (2002) Controlled photomosaic map of Europa, Je 15M CMN: U.S. Geological Survey Geologic Investigations Series I–2757. http://pubs.usgs.gov/imap/i2757/

  • USGS (2004) Production of digital image models with ISIS. ISIS 2 documentation. https://isis.astrogeology.usgs.gov/Isis2/isis-bin/intro_digi_mosaic.cgi

  • USGS (2013) Stereo processing of planetary stereo imagery using ISIS3 and SOCET SET® a primer. Astrogeology Science Center, USGS

    Google Scholar 

  • USGS (2017a) Mimas Voyager Image Control Network (RAND)

    Google Scholar 

  • USGS (2017b) Control Networks. https://astrogeology.usgs.gov/maps/control-networks

  • Wagner RV, Speyerer EJ, Robinson MS, LROC Team (2015) New mosaicked data products from the LROC team. In: 46th lunar and planetary science conference, abstract #1473. https://www.hou.usra.edu/meetings/lpsc2015/pdf/1473.pdf. Eposter: http://www.lpi.usra.edu/meetings/lpsc2015/eposter/1473.pdf

  • Wang J, Scholes D, Zhou F, Bennette K (2017) COORDINATE SYSTEM? In: Planetary data system (PDS) geosciences node orbital data explorer version 3.0 user’s manual. http://ode.rsl.wustl.edu/moon/pagehelp/quickstartguide/index.html?introduction.htm

  • White OL, Schenk PM, Nimmo F, Hoogenboom T (2014) A new stereo topographic map of Io: Implications for geology from global to local scales. J Geophys Res Planets 119:1276–1301. https://doi.org/10.1002/2013JE004591

    Article  Google Scholar 

  • Willner K, Oberst J, Hussmann H, Giese B, Hoffmann H, Matz K-D, Roatsch T, Duxbury T (2010) Phobos control point network, rotation, and shape. Earth Planet Sci Lett 294:541–546. https://doi.org/10.1016/j.epsl.2009.07.033

    Article  Google Scholar 

  • Willner K, Oberst J, Wählisch M, Matz K, Hoffmann H, Roatsch T, Jaumann R, Mertens V (2008) New astrometric observations of Phobos with the SRC on Mars Express. Astron Astrophys 488:361–364

    Article  Google Scholar 

  • Willner K, Shi X, Oberst J (2014) Phobos’ shape and topography models. Planet Space Sci (PSS) 102:51–59

    Article  Google Scholar 

  • Wong EC, Lai JY (1980) Attitude determination of Galileo spacecraft from star data. In: Guidance and Control Conference, Danvers, MA, 11–13 August 1980. AIAA PAPER, pp 80–1732

    Google Scholar 

  • Zangari A (2015) A meta-analysis of coordinate systems and bibliography of their use on Pluto from Charon’s discovery to the present day. Icarus 246:93–145

    Article  Google Scholar 

  • Zuber M, Smith DE (1996) Topographic mapping of the Moon. Int Arch Photogram Remote Sens 31(B4):1011–1015

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Kirk for the helpful discussions during the planning and reviewing of the manuscript and to P. Sidiropoulos who provided useful additions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hargitai, H., Willner, K., Hare, T. (2019). Fundamental Frameworks in Planetary Mapping: A Review. In: Hargitai, H. (eds) Planetary Cartography and GIS. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-62849-3_4

Download citation

Publish with us

Policies and ethics