Skip to main content

Innate Immune Receptors in the Regulation of Tumor Immunity

  • Chapter
  • First Online:
Oncoimmunology

Abstract

Innate immune receptors, also called pattern recognition receptors (PRRs), have gained much attention for their ability to evoke innate immune responses and regulate adaptive immunity. While the recent advent of immunotherapy for the treatment of cancer has primarily focused on harnessing the adaptive immune responses, signal-transducing innate receptors have come under extensive investigation in the context of regulating antitumor immune responses. Indeed, while these innate receptor classes are well known for the critical roles they play in the recognition of invading pathogens, a mounting body of evidence indicates that they also have the capacity to recognize ligands that are expressed by live or dead cancer cells. Although generally beneficial to the host’s innate responses against pathogens, these receptors appear to manifest either beneficial or harmful role in the host’s immune responses to cancers. Here, we summarize our current knowledge of the role of signal-transducing innate immune receptors in the regulation of cancer progression. We believe that a better understanding of these receptor functions may contribute to the development of effective strategies for cancer immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    Article  CAS  PubMed  Google Scholar 

  2. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    Article  CAS  PubMed  Google Scholar 

  3. Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and anticancer immunosurveillance. Cell. 2016;165(2):276–87.

    Article  CAS  PubMed  Google Scholar 

  4. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59–73.

    Article  CAS  PubMed  Google Scholar 

  5. van der Stegen SJC, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499–509.

    Article  PubMed  CAS  Google Scholar 

  6. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  8. Padmanee S, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61.

    Article  CAS  Google Scholar 

  9. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(5):273–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iannello A, Thompson TW, Ardolino M, Marcus A, Raulet DH. Immunosurveillance and immunotherapy of tumors by innate immune cells. Curr Opin Immunol. 2016;38:52–8.

    Article  CAS  PubMed  Google Scholar 

  11. Woo S-R, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015;33:445–74.

    Article  CAS  PubMed  Google Scholar 

  12. Lodoen MB, Lanier L. Viral modulation of NK cell immunity. Nat Rev Microbiol. 2005;3(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  13. Vivier E, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132(3):515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.

    Article  CAS  PubMed  Google Scholar 

  16. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(2):197–216.

    Article  CAS  PubMed  Google Scholar 

  19. Medzhitov R, Janeway C. The toll receptor family and microbial recognition. Trends Microbiol. 2000;8(10):452–6.

    Article  CAS  PubMed  Google Scholar 

  20. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Google Scholar 

  21. Cotena A, et al. Complement dependent amplification of the innate response to a cognate microbial ligand by the long pentraxin PTX3. J Immunol. 2007;179:6311–7.

    Article  CAS  PubMed  Google Scholar 

  22. Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol. 2008;26(1):535–84.

    Article  CAS  PubMed  Google Scholar 

  23. Pandey S, Singh S, Anang V, Bhatt AN, Natarajan K, Dwarakanath BS. Pattern recognition receptors in cancer progression and metastasis. Cancer Growth Metastasis. 2015;8:25–34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60.

    Article  CAS  PubMed  Google Scholar 

  25. Blander JM. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol. 2014;14(9):601–18.

    Article  CAS  PubMed  Google Scholar 

  26. Jinushi M. The role of innate immune signals in antitumor immunity. Oncoimmunology. 2012;1(2):189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiba S, et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife. 2014;3:e04177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kimura Y, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A. 2016;113(49):14097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vacchelli E, Enot DP, Pietrocola F, Zitvogel L, Kroemer G. Impact of pattern recognition receptors on the prognosis of breast cancer patients undergoing adjuvant chemotherapy. Cancer Res. 2016;76(11):3122–6.

    Article  CAS  PubMed  Google Scholar 

  30. Killeen SD, Wang JH, Andrews EJ, Redmond HP. Exploitation of the toll-like receptor system in cancer: a doubled-edged sword? Br J Cancer. 2006;95(3):247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Corrales L, Matson V, Flood B, Spranger S, Gajewski TF. Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 2016;27(1):96–108.

    Article  PubMed  CAS  Google Scholar 

  32. Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12(10):584–96.

    Article  CAS  PubMed  Google Scholar 

  33. Kopp E, Medzhitov R. Recognition of microbial infection by toll-like receptors. Curr Opin Immunol. 2003;15(4):396–401.

    Article  CAS  PubMed  Google Scholar 

  34. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article  CAS  PubMed  Google Scholar 

  35. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature. 2001;413(6857):732–8.

    Article  CAS  PubMed  Google Scholar 

  36. Galluzzi L, et al. Trial watch: experimental toll-like receptor agonists for cancer therapy. Oncoimmunology. 2012;1(5):699–716.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pradere J-P, Dapito DH, Schwabe RF. The Yin and Yang of toll-like receptors in cancer. Oncogene. 2014;33(27):3485–95.

    Article  CAS  PubMed  Google Scholar 

  38. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–75.

    Article  CAS  PubMed  Google Scholar 

  39. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  40. Lin H, et al. Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in toll-like receptor 2-deficient mice. Hepatology. 2013;57(1):171–82.

    Article  CAS  PubMed  Google Scholar 

  41. Lowe EL, et al. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PLoS One. 2010;5(9):e13027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tye H, et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell. 2012;22(4):466–78.

    Article  CAS  PubMed  Google Scholar 

  43. Kim S, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chin AI, et al. Toll-like receptor 3-mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res. 2010;70(7):2595–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ebihara T, et al. Identification of a polyI: C-inducible membrane protein that participates in dendritic cell-mediated natural killer cell activation. J Exp Med. 2010;207(12):2675–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shime H, et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci. 2012;109(6):2066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Forte G, et al. Polyinosinic-polycytidylic acid limits tumor outgrowth in a mouse model of metastatic lung cancer. J Immunol. 2012;188(11):5357–64.

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell. 2016;30(2):243–56.

    Article  PubMed  CAS  Google Scholar 

  49. Talmadge JE, et al. Immunotherapeutic potential in murine tumor models of polyinosinic-polycytidylic acid and poly-L-lysine solubilized by carboxymethylcellulose. Cancer Res. 1985;45(3):1066–72.

    CAS  PubMed  Google Scholar 

  50. Akazawa T, et al. Antitumor NK activation induced by the toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc Natl Acad Sci U S A. 2007;104(1):252–7.

    Article  CAS  PubMed  Google Scholar 

  51. Matsumoto M, et al. Defined TLR3-specific adjuvant that induces NK and CTL activation without significant cytokine production in vivo. Nat Commun. 2015;6:6280.

    Article  CAS  PubMed  Google Scholar 

  52. Fukata M, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133(6):1869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fukata M, et al. Innate immune signaling by toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis. 2009;15(7):997–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fukata M, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis. 2011;17(7):1464–73.

    Article  PubMed  Google Scholar 

  55. Li Y, et al. Constitutive TLR4 signalling in intestinal epithelium reduces tumor load by increasing apoptosis in APC(min/+) mice. Oncogene. 2014;33(3):369–77.

    Article  PubMed  CAS  Google Scholar 

  56. Dapito DH, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21(4):504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu LX, et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology. 2010;52(4):1322–33.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Z, et al. Toll-like receptor 4 activity protects against hepatocellular tumorigenesis and progression by regulating expression of DNA repair protein Ku70 in mice. Hepatology. 2013;57(5):1869–81.

    Article  CAS  PubMed  Google Scholar 

  59. Mittal D, Saccheri F, Vénéreau E, Pusterla T, Bianchi ME, Rescigno M. TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J. 2010;29(13):2242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bald T, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507(7490):109–13.

    Article  CAS  PubMed  Google Scholar 

  61. Yusuf N, et al. Protective role of TLR4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res. 2008;68(2):615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ochi A, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209(9):1671–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bauer AK, et al. Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J Natl Cancer Inst. 2005;97(23):1778–81.

    Article  CAS  PubMed  Google Scholar 

  64. Naseemuddin M, Iqbal A, Nasti TH, Ghandhi JL, Kapadia AD, Yusuf N. Cell mediated immune responses through TLR4 prevents DMBA-induced mammary carcinogenesis in mice. Int J Cancer. 2012;130(4):765–74.

    Article  CAS  PubMed  Google Scholar 

  65. Ahmed A, Wang JH, Redmond HP. Silencing of TLR4 increases tumor progression and lung metastasis in a murine model of breast cancer. Ann Surg Oncol. 2013;20(Suppl 3):S389–96.

    Article  PubMed  Google Scholar 

  66. Salcedo R, Cataisson C, Hasan U, Yuspa SH, Trinchieri G. MyD88 and its divergent toll in carcinogenesis. Trends Immunol. 2013;34(8):379–89.

    Article  CAS  PubMed  Google Scholar 

  67. Garaude J, Kent A, van Rooijen N, Blander JM. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med. 2012;4(120):120ra16.

    Article  PubMed  CAS  Google Scholar 

  68. Rutkowski MR, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27(1):27–40.

    Article  CAS  PubMed  Google Scholar 

  69. Sidky YA, Borden EC, Weeks CE, Reiter MJ, Hatcher JF, Bryan GT. Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine. Cancer Res. 1992;52(13):3528–33.

    Google Scholar 

  70. Hemmi H, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200.

    Article  CAS  PubMed  Google Scholar 

  71. Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med. 2007;204(6):1441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Drobits B, et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest. 2012;122(2):575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bourquin C, et al. Immunostimulatory RNA oligonucleotides induce an effective antitumoral NK cell response through the TLR7. J Immunol. 2009;183(10):6078–86.

    Article  CAS  PubMed  Google Scholar 

  74. Ochi A, et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest. 2012;122(11):4118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fabbri M, et al. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109(31):E2110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baines J, Celis E. Immune-mediated tumor regression induced by CpG-containing oligodeoxynucleotides. Clin Cancer Res. 2003;9(7):2693–700.

    CAS  PubMed  Google Scholar 

  77. Heckelsmiller K, et al. Peritumoral CpG DNA elicits a coordinated response of CD8 T cells and innate effectors to cure established tumors in a murine colon carcinoma model. J Immunol. 2002;169(7):3892–9.

    Article  CAS  PubMed  Google Scholar 

  78. Carpentier AF, Chen L, Maltonti F, Delattre JY. Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Res. 1999;59(21):5429–32.

    CAS  PubMed  Google Scholar 

  79. Damiano V, et al. A novel toll-like receptor 9 agonist cooperates with trastuzumab in trastuzumab-resistant breast tumors through multiple mechanisms of action. Clin Cancer Res. 2009;15(22):6921–30.

    Article  CAS  PubMed  Google Scholar 

  80. Zambirinis CP, et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Exp Med. 2015;212(12):2077–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461–88.

    Article  CAS  PubMed  Google Scholar 

  82. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15(7):405–14.

    Article  CAS  PubMed  Google Scholar 

  83. Reikine S, Nguyen JB, Modis Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol. 2014;5:342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yoneyama M, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol. 2005;175(5):2851–8.

    Article  CAS  PubMed  Google Scholar 

  85. Venkataraman T, et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol. 2007;178(10):6444–55.

    Article  CAS  PubMed  Google Scholar 

  86. Satoh T, et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A. 2010;107(4):1512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hornung V, et al. 5′-triphosphate RNA is the ligand for RIG-I. Science. 2006;314(5801):994–7.

    Article  PubMed  Google Scholar 

  88. Pichlmair A, et al. RIG-I–mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006;314(5801):997–1001.

    Article  CAS  PubMed  Google Scholar 

  89. Kato H, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med. 2008;205(7):1601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  91. Schafer SL, Lin R, Moore PA, Hiscott J, Pitha PM. Regulation of type I interferon gene expression by interferon regulatory factor-3. J Biol Chem. 1998;273(5):2714–20.

    Article  CAS  PubMed  Google Scholar 

  92. Honda K, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 2005;434(7034):772–7.

    Article  CAS  PubMed  Google Scholar 

  93. Hou J, et al. Hepatic RIG-I predicts survival and interferon-α therapeutic response in hepatocellular carcinoma. Cancer Cell. 2014;25(1):49–63.

    Article  CAS  PubMed  Google Scholar 

  94. Daßler-Plenker J, et al. RIG-I activation induces the release of extracellular vesicles with antitumor activity. Oncoimmunology. 2016;5(10):e1219827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Suthar MS, et al. The RIG-I-like receptor LGP2 controls CD8+ T cell survival and fitness. Immunity. 2012;37(2):235–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Besch R, et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest. 2009;119(8):2399–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Poeck H, et al. 5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat Med. 2008;14(11):1256–63.

    Article  CAS  PubMed  Google Scholar 

  98. Kübler K, et al. Targeted activation of RNA helicase retinoic acid – inducible gene-I induces proimmunogenic apoptosis of human ovarian cancer cells. Cancer Res. 2010;70(13):5293–304.

    Article  PubMed  CAS  Google Scholar 

  99. Glas M, et al. Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma. Stem Cells. 2013;31(6):1064–74.

    Article  CAS  PubMed  Google Scholar 

  100. McCartney S, et al. Distinct and complementary functions of MDA5 and TLR3 in poly(I:C)-mediated activation of mouse NK cells. J Exp Med. 2009;206(13):2967–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Perrot I, et al. TLR3 and Rig-like receptor on myeloid dendritic cells and Rig-like receptor on human NK cells are both mandatory for production of IFN-gamma in response to double-stranded RNA. J Immunol. 2010;185(4):2080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Miyake T, et al. Poly I:C-induced activation of NK cells by CD8 alpha+ dendritic cells via the IPS-1 and TRIF-dependent pathways. J Immunol. 2009;183(4):2522–8.

    Article  CAS  PubMed  Google Scholar 

  103. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15(12):760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Woo SR, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Deng L, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41(5):543–852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Ahn J, Xia T, Konno H, Konno K, Ruiz P, Barber GN. Inflammation-driven carcinogenesis is mediated through STING. Nat Commun. 2014;5:5166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Takaoka A, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448(7152):501–5.

    Article  CAS  PubMed  Google Scholar 

  108. Rojas JJ, et al. Manipulating TLR signaling increases the anti-tumor T cell response induced by viral cancer therapies. Cell Rep. 2016;15(2):264–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Unterholzner L, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu Y-J. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12(10):959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Parvatiyar K, et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol. 2012;13(12):1155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Polprasert C, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27(5):658–70.

    Article  CAS  PubMed  Google Scholar 

  113. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife. 2012;1:e00047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kondo T, et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci U S A. 2013;110(8):2969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol. 2014;193(12):6124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ahn J, Konno H, Barber G. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene. 2015;34457(41):5302–8.

    Article  CAS  Google Scholar 

  117. Zhu Q, et al. Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J Immunol. 2014;193(10):4779–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ohkuri T, et al. STING contributes to anti-glioma immunity via triggering type-I IFN signals in the tumor microenvironment. Cancer Immunol Res. 2014;2(12):1199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li T, et al. Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci Rep. 2016;6:19049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Demaria O, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci. 2015;112(50):15408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Corrales L, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zitvogel L, Galluzzi L, Smyth M, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013;39(1):74–88.

    Article  CAS  PubMed  Google Scholar 

  123. Corrales L, McWhirter SM, Dubensky TW, Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Invest. 2016;126(7):2404–11.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Downey CM, Aghaei M, Schwendener RA, Jirik FR. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′3′-cGAMP, induces M2 macrophage repolarization. PLoS One. 2014;9(6):10–2.

    Article  CAS  Google Scholar 

  125. Sun J, et al. Activation of mitogen-activated protein kinases by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) plays an important role in macrophage stimulation. Biochem Pharmacol. 2011;82(9):1175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lemos H, et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res. 2016;76(8):2076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Geijtenbeek TBH, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9(7):465–79.

    Article  CAS  PubMed  Google Scholar 

  128. Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015;32:21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sancho D, Reis e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol. 2012;30:491–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology. 2009;214(7):562–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ina K, Kataoka T, Ando T. The use of lentinan for treating gastric cancer. Anti Cancer Agents Med Chem. 2013;13(5):681–8.

    Article  CAS  Google Scholar 

  132. Chan GC-F, Chan WK, Sze DM-Y. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009;2:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Yan H, Kamiya T, Suabjakyong P, Tsuji NM. Targeting C-type lectin receptors for cancer immunity. Front Immunol. 2015;6:408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Leibundgut-landmann S, Osorio F, Brown GD, Reis C. Stimulation of dendritic cells via the Dectin-1/Syk pathway allows priming of cytotoxic T cell responses. Blood. 2008;112(13):4971–81.

    Article  CAS  PubMed  Google Scholar 

  135. Masuda Y, Inoue M, Miyata A, Mizuno S, Nanba H. Maitake beta-glucan enhances therapeutic effect and reduces myelosuppression and nephrotoxicity of cisplatin in mice. Int Immunopharmacol. 2009;9(5):620–6.

    Article  CAS  PubMed  Google Scholar 

  136. Tian J, et al. β-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol. 2013;43(5):1220–30.

    Article  CAS  PubMed  Google Scholar 

  137. Liu M, et al. Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. J Immunol. 2015;195(10):5055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Masuda Y, Inoue H, Ohta H, Miyake A, Konishi M, Nanba H. Oral administration of soluble β-glucans extracted from Grifola frondosa induces systemic antitumor immune response and decreases immunosuppression in tumor-bearing mice. Int J Cancer. 2013;133(1):108–19.

    Article  CAS  PubMed  Google Scholar 

  139. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9(10):1179–88.

    Article  CAS  PubMed  Google Scholar 

  140. Seifert L, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and mincle-induced immune suppression. Nature. 2016;532(7598):1–17.

    Article  CAS  Google Scholar 

  141. Lowe KL, Navarro-Nunez L, Watson SP. PL-06 platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res. 2012;129(SUPPL. 1):S30–7.

    Article  CAS  PubMed  Google Scholar 

  142. Suzuki-Inoue K, et al. Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem. 2010;285(32):24494–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Suzuki-Inoue K, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282(36):25993–6001.

    Article  CAS  PubMed  Google Scholar 

  144. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  145. Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol. 2012;3:283.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Martín-Villar E, Megías D, Castel S, Yurrita MM, Vilaró S, Quintanilla M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci. 2006;119(21):4541–53.

    Article  PubMed  CAS  Google Scholar 

  147. Takagi S, et al. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One. 2013;8(8):1–11.

    Article  CAS  Google Scholar 

  148. Garcia-Vallejo JJ, van Kooyk Y. The physiological role of DC-SIGN: a tale of mice and men. Trends Immunol. 2013;34(10):482–6.

    Article  CAS  PubMed  Google Scholar 

  149. Unger WWJ, et al. Glycan-modified liposomes boost CD4 + and CD8 + T-cell responses by targeting DC-SIGN on dendritic cells. J Control Release. 2012;160(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  150. Chen H, Yuan B, Zheng Z, Liu Z, Wang S. Lewis X oligosaccharides-heparanase complex targeting to DCs enhance antitumor response in mice. Cell Immunol. 2011;269(2):144–8.

    Article  CAS  PubMed  Google Scholar 

  151. Nonaka M, et al. Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J Immunol. 2008;180(5):3347–56.

    Article  CAS  PubMed  Google Scholar 

  152. Van Gisbergen KPJM, a Aarnoudse C, a Meijer G, Geijtenbeek TBH, Van Kooyk Y. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. Cancer Res. 2005;65(13):5935–44.

    Article  PubMed  Google Scholar 

  153. Nonaka M, et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) recognizes a novel ligand, Mac-2-binding protein, characteristically expressed on human colorectal carcinomas. J Biol Chem. 2011;286(25):22403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Domínguez-Soto A, et al. Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on M2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10. J Immunol. 2011;186:2192–200.

    Article  PubMed  CAS  Google Scholar 

  155. Conde P, et al. DC-SIGN+ macrophages control the induction of transplantation tolerance. Immunity. 2015;42(6):1143–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Saeland E, et al. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol Immunother. 2007;56(8):1225–36.

    Article  CAS  PubMed  Google Scholar 

  157. Beatson R, et al. The breast cancer-associated glycoforms of MUC1, MUC1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-type lectin MGL. PLoS One. 2015;10(5):1–21.

    Article  CAS  Google Scholar 

  158. Napoletano C, et al. Targeting of macrophage galactose-type C-type lectin (MGL) induces DC signaling and activation. Eur J Immunol. 2012;42(4):936–45.

    Article  CAS  PubMed  Google Scholar 

  159. Ichii S, Imai Y, Irimura T. Initial steps in lymph node metastasis formation in an experimental system: possible involvement of recognition by macrophage C-type lectins. Cancer Immunol Immunother. 2000;49(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  160. Singh SK, et al. Design of neo-glycoconjugates that target the mannose receptor and enhance TLR-independent cross-presentation and Th1 polarization. Eur J Immunol. 2011;41(4):916–25.

    Article  CAS  PubMed  Google Scholar 

  161. He L-Z, et al. Antigenic targeting of the human mannose receptor induces tumor immunity. J Immunol. 2007;178(10):6259–67.

    Article  CAS  PubMed  Google Scholar 

  162. Allavena P, et al. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin Dev Immunol. 2010;2010:547179.

    Article  CAS  PubMed  Google Scholar 

  163. Arteta B, Lasuen N, Lopategi A, Sveinbjörnsson B, Smedsrød B, Vidal-Vanaclocha F. Colon carcinoma cell interaction with liver sinusoidal endothelium inhibits organ-specific antitumor immunity through interleukin-1-induced mannose receptor in mice. Hepatology. 2010;51(6):2172–82.

    Article  CAS  PubMed  Google Scholar 

  164. Miyake Y, et al. C-type lectin MCL is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity. 2013;38(5):1050–62.

    Article  CAS  PubMed  Google Scholar 

  165. Le Zhu L, et al. C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013;39(2):324–34.

    Article  CAS  PubMed  Google Scholar 

  166. Miyake Y, Oh-hora M, Yamasaki S. C-type lectin receptor MCL facilitates mincle expression and signaling through complex formation. J Immunol. 2015;194(11):5366–74.

    Article  CAS  PubMed  Google Scholar 

  167. Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6:1–11.

    Article  CAS  Google Scholar 

  168. Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35(46):5931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ahrens S, et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity. 2012;36(4):635–45.

    Article  CAS  PubMed  Google Scholar 

  170. Zhang JG, et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity. 2012;36(4):646–57.

    Article  CAS  PubMed  Google Scholar 

  171. Neumann K, et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity. 2014;40(3):389–99.

    Article  CAS  PubMed  Google Scholar 

  172. Liu Y, Zeng G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J Immunother. 2012;35(4):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425(6957):516–21.

    Article  CAS  PubMed  Google Scholar 

  174. Conforti-Andreoni C, et al. Uric acid-driven Th17 differentiation requires inflammasome-derived IL-1 and IL-18. J Immunol. 2011;187(11):5842–50.

    Article  CAS  PubMed  Google Scholar 

  175. Nonaka M, et al. Mannan-binding protein, a C-type serum lectin, recognizes primary colorectal carcinomas through tumor-associated Lewis Glycans. J Immunol. 2014;192(3):1294–301.

    Article  CAS  PubMed  Google Scholar 

  176. Terada M, et al. Characterization of oligosaccharide ligands expressed on SW1116 cells recognized by mannan-binding protein: a highly fucosylated polylactosamine type N-glycan. J Biol Chem. 2005;280(12):10897–913.

    Article  CAS  PubMed  Google Scholar 

  177. Riboldi E, et al. Human C-type lectin domain family 4, member C (CLEC4C/BDCA-2/CD303) is a receptor for asialo-galactosyl-oligosaccharides. J Biol Chem. 2011;286(41):35329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Leo VI, et al. CARD9 promotes sex-biased colon tumors in the APCmin mouse model. Cancer Immunol Res. 2015;3(7):721–6.

    Article  CAS  PubMed  Google Scholar 

  179. Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev. 2015;265(1):6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol. 2016;34:12–6.

    PubMed  Google Scholar 

  181. Freeman LC, Ting JPY. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;136:29–38.

    Article  CAS  PubMed  Google Scholar 

  182. Wen H, Ting JP-Y, O’Neill LAJ. A role for the NLRP3 inflammasome in metabolic diseases--did Warburg miss inflammation? Nat Immunol. 2012;13(4):352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Petrilli V. The multifaceted roles of inflammasome proteins in cancer. Curr Opin Oncol. 2017;29(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  184. Allen IC, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti T. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 2010;185(8):4912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dupaul-Chicoine J, et al. The Nlrp3 Inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity. 2015;43(4):751–63.

    Article  CAS  PubMed  Google Scholar 

  187. Chow MT, Tschopp J, Möller A, Smyth MJ. NLRP3 promotes inflammation-induced skin cancer but is dispensable for asbestos-induced mesothelioma. Immunol Cell Biol. 2012;90(10):983–6.

    Article  CAS  PubMed  Google Scholar 

  188. Chow MT, et al. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012;72(22):5721–32.

    Article  CAS  PubMed  Google Scholar 

  189. Ghiringhelli F, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15(10):1170–8.

    Article  CAS  PubMed  Google Scholar 

  190. Bruchard M, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med. 2013;19(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  191. Hu B, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A. 2010;107(50):21635–40.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Janowski AM, et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 2016;126(10):3917–28.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Hu B, et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A. 2013;110(24):9862–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Allen IC, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity. 2012;36(5):742–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zaki MH, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20(5):649–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Man SM, et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell. 2015;162(1):45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wilson JE, et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med. 2015;21(8):906–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Drexler SK, et al. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci U S A. 2012;109(45):18384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhao Z, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review was supported in part by Grant-In-Aid for Scientific Research (S) 15638461 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Agency for Medical Research and Development (A-MED) 15656877. The Department of Molecular Immunology is supported by BONAC Corporation and Kyowa Hakko Kirin Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadatsugu Taniguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hangai, S., Kimura, Y., Taniguchi, T., Yanai, H. (2018). Innate Immune Receptors in the Regulation of Tumor Immunity. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics