Skip to main content

Holonomy Theory of Finsler Manifolds

  • Chapter
  • First Online:
  • 1338 Accesses

Part of the book series: UNIPA Springer Series ((USS))

Abstract

The holonomy group of a Riemannian or Finslerian manifold can be introduced in a very natural way: it is the group generated by parallel translations along loops with respect to the canonical connection. The Riemannian holonomy groups have been extensively studied and by now their complete classification is known. On the Finslerian holonomy, however, only few results are known and, as our results show, it can be essentially different from the Riemannian one.

In recent papers we have developed a method for the investigation of holonomy properties of non-Riemannian Finsler manifolds by constructing tangent Lie algebras to the holonomy group: the curvature algebra, the infinitesimal holonomy algebra, and the holonomy algebra. In this book chapter we present this method and give a unified treatment of our results. In particular we show that the dimension of these tangent algebras is usually greater than the possible dimensions of Riemannian holonomy groups and in many cases is infinite. We prove that the holonomy group of a locally projectively flat Finsler manifold of constant curvature is finite dimensional if and only if it is a Riemannian manifold or a flat Finsler manifold. We also show that the topological closure of the holonomy group of a certain class of simply connected, projectively flat Finsler 2-manifolds of constant curvature (spherically symmetric Finsler 2-manifolds) is not a finite dimensional Lie group, and we prove that its topological closure is the connected component of the full diffeomorphism group of the circle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Ackermann, R. Hermann, Sophus Lie’s Transformation Group Paper (Mathematical Science Press, Brookline, 1975).

    Google Scholar 

  2. W. Barthel, Nichtlineare Zusammenhänge und deren Holonomiegruppen. J. Reine Angew. Math. 212, pp. 120–149 (1963)

    MathSciNet  MATH  Google Scholar 

  3. A. Borel, A. Lichnerowicz, Groupes d’holonomie de varietes riemanniennes. CR Acad. Sci. Paris 234, 1835–1837 (1952)

    MathSciNet  MATH  Google Scholar 

  4. R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, in Finsler Geometry, Contemporary Mathematics, vol. 196 (American Mathematical Society, Providence, 1996), pp. 27–42

    Google Scholar 

  5. R. Bryant, Projectively flat Finsler 2-spheres of constant curvature. Sel. Math. N. Ser. 3, 161–204 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. S.S. Chern, Z. Shen, Riemann-Finsler Geometry. Nankai Tracts in Mathematics, vol. 6 (World Scientific, Singapore, 2005)

    Google Scholar 

  7. M. Crampin, D.J. Saunders, Holonomy of a class of bundles with fibre metrics. Publ. Math. Debr. 81, 199–234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ch. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie, Bruxelles, (1950), pp. 29–55

    Google Scholar 

  9. M.R. Herman, Sur le groupe des difféomorphismes du tore. Ann. Inst. Fourier 23, 75–86 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Katznelson, An Introduction to Harmonic Analysis (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  11. S. Kobayashi, Transformation Groups in Differential Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 70 (Springer, Berlin, 1972)

    Google Scholar 

  12. I. Kolar, P.W. Michor, J. Slovak, Natural Operations in Differential Geometry (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  13. L. Kozma, On Landsberg spaces and holonomy of Finsler manifolds. Contemp. Math. 196, 177–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Kozma, Holonomy structures in Finsler geometry. Part 5, in Handbook of Finsler Geometry, ed. by P.L. Antonelli (Kluwer Academic, Dordrecht, 2003), pp. 445–490

    Google Scholar 

  15. A. Kriegl, P.W. Michor, The Convenient Setting for Global Analysis. Surveys and Monographs, vol. 53 (AMS, Providence, 1997)

    Google Scholar 

  16. B. Li, Z. Shen, On a class of projectively flat Finsler metrics with constant flag curvature. Int. J. Math. 18, 1–12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. P.W. Michor, Gauge Theory for Fiber Bundles. Monographs and Textbooks in Physical Sciences. Lecture Notes, vol. 19 (Bibliopolis, Napoli, 1991)

    Google Scholar 

  18. Z. Muzsnay, P.T. Nagy, Tangent Lie algebras to the holonomy group of a Finsler manifold. Commun. Math. 19, 137–147 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Z. Muzsnay, P.T. Nagy, Finsler manifolds with non-Riemannian holonomy. Houst. J. Math. 38, 77–92 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Z. Muzsnay, P.T. Nagy, Witt algebra and the curvature of the Heisenberg group. Commun. Math. 20, 33–40 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Z. Muzsnay, P.T. Nagy, Characterization of projective Finsler manifolds of constant curvature having infinite dimensional holonomy group. Publ. Math. Debr. 84, 17–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Muzsnay, P.T. Nagy, Projectively flat Finsler manifolds with infinite dimensional holonomy. Forum Mathematicum 27, 767–786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Z. Muzsnay, P.T. Nagy, Finsler 2-manifolds with maximal holonomy group of infinite dimension. Differ. Geom. Appl. 39, 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Numata, On Landsberg spaces of scalar curvature. J. Korean Math. Soc. 12, 97–100 (1975)

    MathSciNet  MATH  Google Scholar 

  25. H. Omori, Infinite-Dimensional Lie Groups. Translation of Mathematical Monographs, vol. 158 (American Mathematical Society, Providence, 1997)

    Google Scholar 

  26. G. Randers, On an asymmetrical metric in the fourspace of general relativity. Phys. Rev. (2) 59, 195–199 (1941)

    Google Scholar 

  27. Z. Shen, Differential Geometry of Spray and Finsler Spaces (Kluwer Academic, Dordrecht, 2001)

    Book  MATH  Google Scholar 

  28. Z. Shen, Two-dimensional Finsler metrics of constant flag curvature. Manuscripta Math. 109, 349–366 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Shen, Projectively flat Randers metrics with constant flag curvature. Math. Ann. 325, 19–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Shen, Projectively flat Finsler metrics with constant flag curvature. Trans. Am. Math. Soc. 355, 1713–1728 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Z.I. Szabó, Positive definite Berwald spaces. Tensor, New Ser. 35, 25–39 (1981)

    Google Scholar 

  32. J. Teichmann, Regularity of infinite-dimensional Lie groups by metric space methods. Tokyo J. Math. 24, 29–58 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.A. Wolf, Differentiable fibre spaces and mappings compatible with Riemannian metrics. Michigan Math. J. 11, 65–70 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Muzsnay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Muzsnay, Z., Nagy, P.T. (2017). Holonomy Theory of Finsler Manifolds. In: Falcone, G. (eds) Lie Groups, Differential Equations, and Geometry. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62181-4_12

Download citation

Publish with us

Policies and ethics