Skip to main content

Electrocatalytic Hydrogen Production Properties of Polyaniline Doped with Metal-Organic Frameworks

  • Chapter
  • First Online:
Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE

Abstract

Polyaniline-based metal-organic framework (PANI/MOF) composite was synthesized by chemical oxidation of aniline monomer in the presence of MOF content for practical usages as effective hydrogen production. PANI and composite were characterized by ultraviolet visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopy, atomic absorption spectroscopy (AAS), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDS, EDX), selected area electron diffraction (SAED) and cyclic voltammetry (CV). Detailed structural and morphological characterizations established that PANI is wrapping MOF. The XRD, Raman and FTIR analyses showed that MOF was incorporated on the backbone of PANI through electrostatic interactions. This was supported by AAS analysis, revealing the amount of copper metal present in the composite. The determined energy band gap of the composite was in good agreement with previously reported catalysts for hydrogen evolution reaction (HER). Experiments probing the thermal, electrochemical, HER and photophysical properties revealed that the composite was very stable and robust and had exceptionally properties. Significant HER was generated by the composite in dimethyl sulphoxide/tetrabutylammonium perchlorate (DMSO/TBAP) supporting electrolyte in the presence of hydrogen source by applying a negative potential to the electrode. PANI and MOF also generated a weak HER as compared to composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abdolahi, E. Hamzah, Z. Ibrahim, S. Hashim, Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials 5, 1487–1494 (2012)

    Article  Google Scholar 

  2. H.S. Abdulla, A.I. Abbo, Optical and electrical properties of thin films of polyaniline and polypyrrole. Int. J. Electrochem. Sci. 7, 10666–10678 (2012)

    Google Scholar 

  3. N.F. Attia, K.E. Geckler, Polyaniline as a material for hydrogen storage applications. Macromol. Rapid Commun. 34, 1043–1055 (2013)

    Article  Google Scholar 

  4. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  5. P. Boomi, H.G. Prabu, J. Mathiyarasu, Synthesis and characterization of polyaniline/Ag-Pt nanocomposite for improved antibacterial activity. Colloids Surf. B: Biointerfaces 103, 9–14 (2013)

    Article  Google Scholar 

  6. X. Cao, Y. Han, C. Gao, Y. Xu, X. Huang, M. Willander, N. Wang, Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy 9, 301–308 (2014)

    Article  Google Scholar 

  7. C. Dai, P. Song, J.D. Wadhawan, A.C. Fisher, N.S. Lawrence, Screen printed alizarin-based carbon electrodes: monitoring ph in unbuffered media. Electroanalysis 27, 917–923 (2015)

    Article  Google Scholar 

  8. T. David, J.K. Mathad, T. Padmavathi, A. Vanaja, Part-A: Synthesis of polyaniline and carboxylic acid functionalized SWCNT composites for electromagnetic interference shielding coatings. Polymer 55, 5665–5672 (2014)

    Article  Google Scholar 

  9. M.S. Dresselhaus, I.L. Thomas, Overview alternative energy technologies. Nature 414, 332 (2001)

    Article  Google Scholar 

  10. Y. Feng, H. Jiang, S. Li, J. Wang, X. Jing, Y. Wang, M. Chen, Metal organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surf. A Physicochem. Eng. Asp. 431, 87–92 (2013)

    Article  Google Scholar 

  11. E.M. Geniès, M. Lapkowski, J.F. Penneau, Cyclic voltammetry of polyaniline: interpretation of the middle peak. J. Electroanal. Chem. Interfacial Electrochem. 249, 97–107 (1988)

    Article  Google Scholar 

  12. F. Ke, L.G. Qiu, Y.P. Yuan, F.M. Peng, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, J.F., Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J. Hazard. Mater. 196, 36–43 (2011)

    Article  Google Scholar 

  13. G. Kickelbick, Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 28, 83–114 (2003)

    Article  Google Scholar 

  14. K.J. Kim, Y.J. Li, P.B. Kreider, C.H. Chang, N. Wammenmacher, P.K. Thallapally, H.G. Ahn, High-rate synthesis of Cu-BTC metal-organic frameworks. Chem. Commun. 49, 11518–11520 (2013)

    Article  Google Scholar 

  15. M. Kulkarni, B. Kale, S. Apte, S. Naik, U. Mulik, D. Amalnerkar, Synthesis and characterization of polyaniline nanofibres by rapid liquid-liquid interfacial polymerization method. Chem. Chem. Technol. 5, 55–58 (2011)

    Google Scholar 

  16. C.F. Leung, Y.Z. Chen, H.Q. Yu, S.M. Yiu, C.C. Ko, T.C. Lau, Electro- and photocatalytic hydrogen generation in acetonitrile and aqueous solutions by a cobalt macrocyclic Schiff-base complex. Int. Hydrogen Energy 36, 11640–11645 (2011)

    Article  Google Scholar 

  17. K.S. Lin, A.K. Adhikari, C.K. Ku, C.L. Chiang, H. Kuo, Synthesis and characterization of porous HKUST-2 metal organic frameworks for hydrogen storage. Int. J. Hydrog. Energy 37, 13865–13871 (2012)

    Article  Google Scholar 

  18. S. Loera-Serna, M.A. Oliver-Tolentino, M.L. López-Núñez, A. Santana-Cruz, A. Guzmán-Vargas, R. Cabrera-Sierra, H.I. Beltrán, J. Flores, Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J. Alloys Compd. 540, 113–120 (2012)

    Article  Google Scholar 

  19. A. Malinsuskes, Electrocatalysis at conducting polymers. Synth. Met. 107, 75–83 (1999)

    Article  Google Scholar 

  20. S. Mandegarzad, J.B. Raoof, S.R. Hosseini, R. Ojani, Cu-Pt bimetallic nanoparticles supported metal organic framework-derived nanoporous carbon as a catalyst for hydrogen evolution reaction. Electrochim. Acta 190, 729–736 (2016)

    Article  Google Scholar 

  21. K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwouha, Electronics of conjugated polymers (I): polyaniline. Int. J. Electrochem. Sci. 7, 11859–11875 (2012)

    Google Scholar 

  22. A. Mostafaei, F. Nasirpouri, Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings: synthesis, characterization and corrosion protection performance of conducting paints. Prog. Org. Coat. 77, 146–159 (2014)

    Article  Google Scholar 

  23. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci.: Mater. Int. 22, 273–280 (2012)

    Article  Google Scholar 

  24. M.I. Nandasiri, S.R. Jambovane, B.P. McGrail, H.T. Schaef, S.K. Nune, Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coord. Chem. Rev. 311, 38–52 (2016)

    Article  Google Scholar 

  25. G. Neetika, O. Kumar, S.K. Tomar, Thermal behaviour of chemically synthesized polyanilines/polystyrene sulphonic acid composites. Int. J. Mater. Chem. 2, 79–85 (2012)

    Article  Google Scholar 

  26. R.F. Ngece, N. West, P.M. Ndangili, R. Olowu, A. Williams, N. Hendricks, S. Mailu, P. Baker, E. Iwuoha, A silver nanoparticle/poly (8-anilino-1-naphthalene sulphonic acid) bioelectrochemical biosensor system for the analytical determination of ethambutol. Int. J. Electrochem. Sci. 6, 1820–1834 (2011)

    Google Scholar 

  27. C. Nila, I. González, Thermodynamics of Cu-H2SO4-Cl−H2O and Cu-NH4Cl-H2O based on predominance-existence diagrams and Pourbaix-type diagrams. Hydrometallurgy 42, 63–82 (1996)

    Article  Google Scholar 

  28. R. Ojani, R. Valiollahi, J.B. Raoof, Comparison between graphene supported Pt hollow nanospheres and graphene supported Pt solid nanoparticles for hydrogen evolution reaction. Energy 74, 871 (2014)

    Article  Google Scholar 

  29. E. Portenkirchner, S. Schlager, D. Apaydin, K. Oppelt, M. Himmelsbach, D.A.M. Egbe, H. Neugebauer, G. Knör, T. Yoshida, N.S. Sariciftc, Using the alkynyl-substituted rhenium(I) complex (4,4′-bisphenyl-ethynyl-2,2′-bipyridyl)Re(Co)3Cl as catalyst for CO2 reduction—synthesis, characterization, and application. Electrocatalysis 6, 185–197 (2015)

    Article  Google Scholar 

  30. F. Raganati, V. Gagiulo, P. Ammendola, M. Alfe, R. Chirone, CO2 capture of HKUST-1 in a sound assisted fluidized bed. Chem. Eng. J. 239, 75–86 (2014)

    Article  Google Scholar 

  31. M.M. Rahman, I.C. Jeon, Studies of electrochemical behavior of swnt-film electrodes. J. Braz. Chem. Soc. 18, 1150–1157 (2007)

    Article  Google Scholar 

  32. F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – a review. Int. J. Hydrog. Energy 40, 256–274 (2015)

    Article  Google Scholar 

  33. S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—a review. J. Power Sources 208, 96–119 (2012)

    Article  Google Scholar 

  34. E. Song, J.W. Choi, Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nano 3, 498–523 (2013)

    Google Scholar 

  35. M.S. Tamboli, M.V. Kulkarni, R.H. Patil, W.N. Gade, S.C. Navale, B.B. Kale, Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf. B: Biointerfaces 92, 35–41 (2012)

    Article  Google Scholar 

  36. J. Tang, X. Zhao, Y. Zuo, P. Ju, Y. Tang, Electrodeposited Pd-Ni-Mo film as a cathode material for hydrogen evolution reaction. Electrochim. Acta 174, 1041–1049 (2015)

    Article  Google Scholar 

  37. S. Tharani, S.C. Vinayagam, Synthesis of novel cerium doped polyaniline multiwalled carbon nanotubes and their optical and electrochemical properties for supercapacitor applications. Int. J. Adv. Res. 3, 810–822 (2015)

    Google Scholar 

  38. F. Wang, H. Guo, Y. Chai, Y. Li, C. Liu, The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method”. Microporous Mesoporous Mater. 173, 181–188 (2013)

    Article  Google Scholar 

  39. X. Wang, X. Lu, L. Wu, J. Chen, 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens. Bioelectron. 65, 295–301 (2015)

    Article  Google Scholar 

  40. B. Xiao, Q. Yuan, Nanoporous metal organic framework materials for hydrogen storage. Particuology 7, 129–140 (2009)

    Article  Google Scholar 

  41. Z. Xie, P. He, L. Du, F. Dong, K. Dai, T. Zhang, Comparison of four nickel-based electrodes for hydrogen evolution reaction. Electrochim. Acta 88, 390–394 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

KDM and MJH would like to thank financial supports from the National Research Foundation (NRF) of South Africa under the Unique Grant No. 99278 and University of Limpopo (Grants: R202 and R232).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mpitloane J. Hato or Kwena D. Modibane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ramohlola, K.E. et al. (2017). Electrocatalytic Hydrogen Production Properties of Polyaniline Doped with Metal-Organic Frameworks. In: Kaneko, S., et al. Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE. Springer, Cham. https://doi.org/10.1007/978-3-319-61651-3_15

Download citation

Publish with us

Policies and ethics