Skip to main content

Repair of Direct Resin Composite Restorations

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

“Minimally Invasive Dentistry” approach offers unique solutions to prolong the longevity of a defective resin composite restoration with the adhesive technology. A repair of a defective resin composite restoration is indicated when the clinician can replace the defective part of the restoration leaving the intact part in place. Repairing a restoration the dentist avoids unnecessary removal of healthy tooth tissues and iatrogenic further damage to pulp, reduces cost and shortens chair-time. However, since repair of an existing resin composite restoration is indicated after months or years of service life, obtaining a durable bond between the existing and repair resin composite becomes complicated because of leaching of the constituents, water uptake and enzymatic degradation of restoration surface. The interface between the aged and repair composite material can be considered “the weakest link”. Up-to-date, numerous surface treatment modalities have been introduced but none of them has been accepted as the “golden standard”. This chapter summarizes the repair mechanisms of surface treatment methods of the existing resin composite to achieve long lasting and durable bond between the existing and the repair resin composite.

A chain is no stronger than its weakest link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sunnegardh-Gronberg K, van Dijken JW, Funegard U, Lindberg A, Nilsson M. Selection of dental materials and longevity of replaced restorations in public dental health clinics in northern Sweden. J Dent. 2009;37(9):673–8. doi:10.1016/j.jdent.2009.04.010.

    Article  PubMed  Google Scholar 

  2. Statement on posterior resin-based composites. ADA Council on scientific affairs; ADA Council on dental benefit programs. J Am Dent Assoc. 1998;129(11):1627–8.

    Article  Google Scholar 

  3. Burke FJ. Amalgam to tooth-coloured materials—implications for clinical practice and dental education: governmental restrictions and amalgam-usage survey results. J Dent. 2004;32(5):343–50. doi:10.1016/j.jdent.2004.02.003.

    Article  PubMed  Google Scholar 

  4. Maneenut C, Sakoolnamarka R, Tyas MJ. The repair potential of resin composite materials. Dent Mater. 2011;27(2):e20–7. doi:10.1016/j.dental.2010.09.006.

    Article  PubMed  Google Scholar 

  5. Gordan VV, Garvan CW, Blaser PK, Mondragon E, Mjor IA. A long-term evaluation of alternative treatments to replacement of resin-based composite restorations: results of a seven-year study. J Am Dent Assoc. 2009;140(12):1476–84.

    Article  PubMed  Google Scholar 

  6. Mjor IA, Gordan VV. Failure, repair, refurbishing and longevity of restorations. Oper Dent. 2002;27(5):528–34.

    PubMed  Google Scholar 

  7. Blum IR, Lynch CD, Wilson NH. Factors influencing repair of dental restorations with resin composite. Clin Cosmet Investig Dent. 2014;6:81–7. doi:10.2147/CCIDE.S53461.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lynch CD, Opdam NJ, Hickel R, Brunton PA, Gurgan S, Kakaboura A, et al. Guidance on posterior resin composites: academy of operative dentistry – European section. J Dent. 2014;42(4):377–83. doi:10.1016/j.jdent.2014.01.009.

    Article  PubMed  Google Scholar 

  9. Sharif MO, Catleugh M, Merry A, Tickle M, Dunne SM, Brunton P, et al. Replacement versus repair of defective restorations in adults: resin composite. Cochrane Database Syst Rev. 2014;2:CD005971. doi:10.1002/14651858.CD005971.pub3.

    Google Scholar 

  10. Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry—a review. FDI Commission Project 1-97. Int Dent J. 2000;50(1):1–12.

    Article  PubMed  Google Scholar 

  11. Mjor IA, Shen C, Eliasson ST, Richter S. Placement and replacement of restorations in general dental practice in Iceland. Oper Dent. 2002;27(2):117–23.

    PubMed  Google Scholar 

  12. Hickel R, Peschke A, Tyas M, Mjor I, Bayne S, Peters M, et al. FDI world dental federation—clinical criteria for the evaluation of direct and indirect restorations. Update and clinical examples. J Adhes Dent. 2010;12(4):259–72. doi:10.3290/j.jad.a19262.

    PubMed  Google Scholar 

  13. Hickel R, Brushaver K, Ilie N. Repair of restorations—criteria for decision making and clinical recommendations. Dent Mater. 2013;29(1):28–50. doi:10.1016/j.dental.2012.07.006.

    Article  PubMed  Google Scholar 

  14. Loomans B, Ozcan M. Intraoral repair of direct and indirect restorations: procedures and guidelines. Oper Dent. 2016;41(S7):S68–78. doi:10.2341/15-269-LIT.

    Article  PubMed  Google Scholar 

  15. Staehle HJ, Wolff D, Frese C. More conservative dentistry: clinical long-term results of direct composite resin restorations. Quintessence Int. 2015;46(5):373–80. doi:10.3290/j.qi.a33718.

    PubMed  Google Scholar 

  16. Blum IR, Jagger DC, Wilson NH. Defective dental restorations: to repair or not to repair? Part 1: direct composite restorations. Dent Update. 2011;38(2):78–80. 2-4

    Article  PubMed  Google Scholar 

  17. Hickel R, Roulet JF, Bayne S, Heintze SD, Mjor IA, Peters M, et al. Recommendations for conducting controlled clinical studies of dental restorative materials. Int Dent J. 2007;57(5):300–2.

    Article  PubMed  Google Scholar 

  18. Ismail AI, Pitts NB, Tellez M, Management S, Banerjee A, Authors of International Caries C, et al. The International Caries Classification and Management System (ICCMS) an example of a caries management pathway. BMC Oral Health. 2015;15(Suppl 1):S9. doi:10.1186/1472–6831-15-S1-S9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blum IR, Schriever A, Heidemann D, Mjor IA, Wilson NH. The repair of direct composite restorations: an international survey of the teaching of operative techniques and materials. Eur J Dent Educ. 2003;7(1):41–8.

    Article  PubMed  Google Scholar 

  20. Elderton RJ, Nuttall NM. Variation among dentists in planning treatment. Br Dent J. 1983;154(7):201–6.

    Article  PubMed  Google Scholar 

  21. Mobarak E, El-Deeb H. Two-year interfacial bond durability and nanoleakage of repaired silorane-based resin composite. Oper Dent. 2013;38(4):408–18. doi:10.2341/12-061-L.

    Article  PubMed  Google Scholar 

  22. Rodrigues SA Jr, Ferracane JL, Della BA. Influence of surface treatments on the bond strength of repaired resin composite restorative materials. Dent Mater. 2009;25(4):442–51. doi:10.1016/j.dental.2008.09.009.

    Article  PubMed  Google Scholar 

  23. Gordan VV, Shen C, Riley J 3rd, Mjor IA. Two-year clinical evaluation of repair versus replacement of composite restorations. J Esthet Restor Dent. 2006;18(3):144–153.; discussion 54. doi:10.1111/j.1708-8240.2006.00007.x.

    Article  PubMed  Google Scholar 

  24. Sharif MO, Catleugh M, Merry A, Tickle M, Dunne SM, Brunton P, et al. Replacement versus repair of defective restorations in adults: resin composite. Cochrane Database Syst Rev. 2010;2:CD005971. doi:10.1002/14651858.CD005971.pub2.

    Google Scholar 

  25. Sharif MO, Merry A, Catleugh M, Tickle M, Brunton P, Dunne SM, et al. Replacement versus repair of defective restorations in adults: amalgam. Cochrane Database Syst Rev. 2010;2:CD005970. doi:10.1002/14651858.CD005970.pub2.

    Google Scholar 

  26. Benn DK. Radiographic caries diagnosis and monitoring. Dentomaxillofac Radiol. 1994;23(2):69–72. doi:10.1259/dmfr.23.2.7835505.

    Article  PubMed  Google Scholar 

  27. Frencken JE, Peters MC, Manton DJ, Leal SC, Gordan VV, Eden E. Minimal intervention dentistry for managing dental caries - a review: report of a FDI task group. Int Dent J. 2012;62(5):223–43. doi:10.1111/idj.12007.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Turkun LS. The clinical performance of one- and two-step self-etching adhesive systems at one year. J Am Dent Assoc. 2005;136(5):656–64. quiz 83

    Article  PubMed  Google Scholar 

  29. Ermis RB, Temel UB, Cellik EU, Kam O. Clinical performance of a two-step self-etch adhesive with additional enamel etching in class III cavities. Oper Dent. 2010;35(2):147–55. doi:10.2341/09-089-C.

    Article  PubMed  Google Scholar 

  30. Fron H, Vergnes JN, Moussally C, Cazier S, Simon AL, Chieze JB, et al. Effectiveness of a new one-step self-etch adhesive in the restoration of non-carious cervical lesions: 2-year results of a randomized controlled practice-based study. Dent Mater. 2011;27(3):304–12. doi:10.1016/j.dental.2010.11.006.

    Article  PubMed  Google Scholar 

  31. Perdigao J, Dutra-Correa M, Anauate-Netto C, Castilhos N, Carmo AR, Lewgoy HR, et al. Two-year clinical evaluation of self-etching adhesives in posterior restorations. J Adhes Dent. 2009;11(2):149–59.

    PubMed  Google Scholar 

  32. Baracco B, Perdigao J, Cabrera E, Giraldez I, Ceballos L. Clinical evaluation of a low-shrinkage composite in posterior restorations: one-year results. Oper Dent. 2012;37(2):117–29. doi:10.2341/11-179-C.

    Article  PubMed  Google Scholar 

  33. Gordan VV, Riley JL 3rd, Geraldeli S, Rindal DB, Qvist V, Fellows JL, et al. Repair or replacement of defective restorations by dentists in the dental practice-based research network. J Am Dent Assoc. 2012;143(6):593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kaneko M, Caldas RA, Feitosa VP, Xediek Consani RL, Schneider LF, Bacchi A. Influence of surface treatments to repair recent fillings of silorane-and methacrylate-based composites. J Conserv Dent. 2015;18(3):242–6. doi:10.4103/0972-0707.157265.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Blum IR, Lynch CD, Schriever A, Heidemann D, Wilson NH. Repair versus replacement of defective composite restorations in dental schools in Germany. Eur J Prosthodont Restor Dent. 2011;19(2):56–61.

    PubMed  Google Scholar 

  36. Blum IR, Lynch CD, Wilson NH. Teaching of the repair of defective composite restorations in Scandinavian dental schools. J Oral Rehabil. 2012;39(3):210–6. doi:10.1111/j.1365-2842.2011.02260.x.

    Article  PubMed  Google Scholar 

  37. Blum IR, Lynch CD, Wilson NH. Teaching of direct composite restoration repair in undergraduate dental schools in the United Kingdom and Ireland. Eur J Dent Educ. 2012;16(1):e53–8. doi:10.1111/j.1600-0579.2010.00674.x.

    Article  PubMed  Google Scholar 

  38. Schwendicke F, Frencken JE, Bjorndal L, Maltz M, Manton DJ, Ricketts D, et al. Managing carious lesions: consensus recommendations on carious tissue removal. Adv Dent Res. 2016;28(2):58–67. doi:10.1177/0022034516639271.

    Article  PubMed  Google Scholar 

  39. Vankerckhoven H, Lambrechts P, van Beylen M, Davidson CL, Vanherle G. Unreacted methacrylate groups on the surfaces of composite resins. J Dent Res. 1982;61(6):791–5.

    Article  PubMed  Google Scholar 

  40. Rinastiti M, Ozcan M, Siswomihardjo W, Busscher HJ. Immediate repair bond strengths of microhybrid, nanohybrid and nanofilled composites after different surface treatments. J Dent. 2010;38(1):29–38. doi:10.1016/j.jdent.2009.08.009.

    Article  PubMed  Google Scholar 

  41. Suzuki S, Ori T, Saimi Y. Effects of filler composition on flexibility of microfilled resin composite. J Biomed Mater Res B Appl Biomater. 2005;74(1):547–52. doi:10.1002/jbm.b.30235.

    Article  PubMed  Google Scholar 

  42. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22(3):211–22. doi:10.1016/j.dental.2005.05.005.

    Article  PubMed  Google Scholar 

  43. Soderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984;63(10):1248–54.

    Article  PubMed  Google Scholar 

  44. Soderholm KJ, Roberts MJ. Variables influencing the repair strength of dental composites. Scand J Dent Res. 1991;99(2):173–80.

    PubMed  Google Scholar 

  45. Lewis G, Johnson W, Martin W, Canerdy A, Claburn C, Collier M. Shear bond strength of immediately repaired light-cured composite resin restorations. Oper Dent. 1998;23(3):121–7.

    PubMed  Google Scholar 

  46. Nakano Y, Yoshimura M, Koga T. Correlation between oral malodor and periodontal bacteria. Microbes Infect. 2002;4(6):679–83.

    Article  PubMed  Google Scholar 

  47. Fawzy AS, El-Askary FS, Amer MA. Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite. J Dent. 2008;36(12):969–76. doi:10.1016/j.jdent.2008.07.014.

    Article  PubMed  Google Scholar 

  48. Lucena-Martin C, Gonzalez-Lopez S. Navajas-Rodriguez de Mondelo JM. The effect of various surface treatments and bonding agents on the repaired strength of heat-treated composites. J Prosthet Dent. 2001;86(5):481–8.

    Article  PubMed  Google Scholar 

  49. Lima AF, Ferreira SF, Catelan A, Palialol AR, Goncalves LS, Aguiar FH, et al. The effect of surface treatment and bonding procedures on the bond strength of silorane composite repairs. Acta Odontol Scand. 2014;72(1):71–5. doi:10.3109/00016357.2013.804945.

    Article  PubMed  Google Scholar 

  50. Palasuk J, Platt JA, Cho SD, Levon JA, Brown DT, Hovijitra ST. Effect of surface treatments on microtensile bond strength of repaired aged silorane resin composite. Oper Dent. 2013;38(1):91–9. doi:10.2341/11-057-L.

    Article  PubMed  Google Scholar 

  51. Jafarzadeh Kashi TS, Erfan M, Rakhshan V, Aghabaigi N, Tabatabaei FS. An in vitro assessment of the effects of three surface treatments on repair bond strength of aged composites. Oper Dent. 2011;36(6):608–17. doi:10.2341/10-386-L.

    Article  PubMed  Google Scholar 

  52. Baena E, Vignolo V, Fuentes MV, Ceballos L. Influence of repair procedure on composite-to-composite microtensile bond strength. Am J Dent. 2015;28(5):255–60.

    PubMed  Google Scholar 

  53. Imbery TA, Gray T, DeLatour F, Boxx C, Best AM, Moon PC. Evaluation of flexural, diametral tensile, and shear bond strength of composite repairs. Oper Dent. 2014;39(6):E250–60. doi:10.2341/13-299-L.

    Article  PubMed  Google Scholar 

  54. Kallio TT, Tezvergil-Mutluay A, Lassila LV, Vallittu PK. The effect of surface roughness on repair bond strength of light-curing composite resin to polymer composite substrate. Open Dent J. 2013;7:126–31. doi:10.2174/1874210601307010126.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cavalcanti AN, De Lima AF, Peris AR, Mitsui FH, Marchi GM. Effect of surface treatments and bonding agents on the bond strength of repaired composites. J Esthet Restor Dent. 2007;19(2):90–98.; discussion 9. doi:10.1111/j.1708-8240.2007.00073.x.

    Article  PubMed  Google Scholar 

  56. Melo MA, Moyses MR, Santos SG, Alcantara CE, Ribeiro JC. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs. Braz Oral Res. 2011;25(6):485–91.

    Article  PubMed  Google Scholar 

  57. Loomans BA, Cardoso MV, Roeters FJ, Opdam NJ, De Munck J, Huysmans MC, et al. Is there one optimal repair technique for all composites? Dent Mater. 2011;27(7):701–9. doi:10.1016/j.dental.2011.03.013.

    Article  PubMed  Google Scholar 

  58. Ozcan M, Pekkan G. Effect of different adhesion strategies on bond strength of resin composite to composite-dentin complex. Oper Dent. 2013;38(1):63–72. doi:10.2341/11-482-L.

    Article  PubMed  Google Scholar 

  59. Gupta S, Parolia A, Jain A, Kundabala M, Mohan M, de Moraes Porto IC. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength. J Indian Soc Pedod Prev Dent. 2015;33(3):245–9. doi:10.4103/0970-4388.160402.

    Article  PubMed  Google Scholar 

  60. Barcellos DCSV, Niu LN, Pashley DH, Franklin R, Tay FR, Cesar R, Pucci CR. Repair of composites: effect of laser and different surface treatments. Int J Adhesion & Adhesives. 2015;59:1–6.

    Article  Google Scholar 

  61. Brosh T, Pilo R, Bichacho N, Blutstein R. Effect of combinations of surface treatments and bonding agents on the bond strength of repaired composites. J Prosthet Dent. 1997;77(2):122–6.

    Article  PubMed  Google Scholar 

  62. Furuse AY, da Cunha LF, Benetti AR, Mondelli J. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments. J Appl Oral Sci. 2007;15(6):501–5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bonstein T, Garlapo D, Donarummo J Jr, Bush PJ. Evaluation of varied repair protocols applied to aged composite resin. J Adhes Dent. 2005;7(1):41–9.

    PubMed  Google Scholar 

  64. Chan KC, Boyer DB. Repair of conventional and microfilled composite resins. J Prosthet Dent. 1983;50(3):345–50.

    Article  PubMed  Google Scholar 

  65. Kupiec KA, Barkmeier WW. Laboratory evaluation of surface treatments for composite repair. Oper Dent. 1996;21(2):59–62.

    PubMed  Google Scholar 

  66. Loomans BA, Cardoso MV, Opdam NJ, Roeters FJ, De Munck J, Huysmans MC, et al. Surface roughness of etched composite resin in light of composite repair. J Dent. 2011;39(7):499–505. doi:10.1016/j.jdent.2011.04.007.

    Article  PubMed  Google Scholar 

  67. Staxrud F, Dahl JE. Silanising agents promote resin-composite repair. Int Dent J. 2015;65(6):311–5. doi:10.1111/idj.12188.

    Article  PubMed  Google Scholar 

  68. Staxrud F, Dahl JE. Role of bonding agents in the repair of composite resin restorations. Eur J Oral Sci. 2011;119(4):316–22. doi:10.1111/j.1600-0722.2011.00833.x.

    Article  PubMed  Google Scholar 

  69. Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL. State of the art of self-etch adhesives. Dent Mater. 2011;27(1):17–28. doi:10.1016/j.dental.2010.10.023.

    Article  PubMed  Google Scholar 

  70. Ozcan M. Evaluation of alternative intra-oral repair techniques for fractured ceramic-fused-to-metal restorations. J Oral Rehabil. 2003;30(2):194–203.

    Article  PubMed  Google Scholar 

  71. Loomans BA, Mine A, Roeters FJ, Opdam NJ, De Munck J, Huysmans MC, et al. Hydrofluoric acid on dentin should be avoided. Dent Mater. 2010;26(7):643–9. doi:10.1016/j.dental.2010.03.007.

    Article  PubMed  Google Scholar 

  72. Saracoglu A, Ozcan M, Kumbuloglu O, Turkun M. Adhesion of resin composite to hydrofluoric acid-exposed enamel and dentin in repair protocols. Oper Dent. 2011;36(5):545–53. doi:10.2341/10-312-L.

    Article  PubMed  Google Scholar 

  73. Asvesti C, Guadagni F, Anastasiadis G, Zakopoulou N, Danopoulou I, Zographakis L. Hydrofluoric acid burns. Cutis. 1997;59(6):306–8.

    PubMed  Google Scholar 

  74. Ozcan M, Raadschelders J, Vallittu P, Lassilla L. Effect of particle deposition parameters on silica coating of zirconia using a chairside air-abrasion device. J Adhes Dent. 2013;15(3):211–4. doi:10.3290/j.jad.a29718.

    PubMed  Google Scholar 

  75. Edelhoff D, Marx R, Spiekermann H, Yildirim M. Clinical use of an intraoral silicoating technique. J Esthet Restor Dent. 2001;13(6):350–6.

    Article  PubMed  Google Scholar 

  76. Lung CY, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater. 2012;28(5):467–77. doi:10.1016/j.dental.2012.02.009.

    Article  PubMed  Google Scholar 

  77. Da Silva S, Da Silva EM, Delphim MB, Poskus LT, Amaral CM. Influence of organic acids present in oral biofilm on the durability of the repair bond strength, sorption and solubility of resin composites. Am J Dent. 2015;28(6):367–72.

    PubMed  Google Scholar 

  78. Hannig C, Laubach S, Hahn P, Attin T. Shear bond strength of repaired adhesive filling materials using different repair procedures. J Adhes Dent. 2006;8(1):35–40.

    PubMed  Google Scholar 

  79. Cho SD, Rajitrangson P, Matis BA, Platt JA. Effect of Er,Cr:YSGG laser, air abrasion, and silane application on repaired shear bond strength of composites. Oper Dent. 2013;38(3):E1–9. doi:10.2341/11-054-L.

    PubMed  Google Scholar 

  80. da Costa TR, Serrano AM, Atman AP, Loguercio AD, Reis A. Durability of composite repair using different surface treatments. J Dent. 2012;40(6):513–21. doi:10.1016/j.jdent.2012.03.001.

    Article  PubMed  Google Scholar 

  81. Luhrs AK, Gormann B, Jacker-Guhr S, Geurtsen W. Repairability of dental siloranes in vitro. Dent Mater. 2011;27(2):144–9. doi:10.1016/j.dental.2010.09.009.

    Article  PubMed  Google Scholar 

  82. Nassoohi N, Kazemi H, Sadaghiani M, Mansouri M, Rakhshan V. Effects of three surface conditioning techniques on repair bond strength of nanohybrid and nanofilled composites. Dent Res J (Isfahan). 2015;12(6):554–61.

    Article  Google Scholar 

  83. Costa TR, Ferreira SQ, Klein-Junior CA, Loguercio AD, Reis A. Durability of surface treatments and intermediate agents used for repair of a polished composite. Oper Dent. 2010;35(2):231–7. doi:10.2341/09-216-L.

    Article  PubMed  Google Scholar 

  84. Yesilyurt C, Kusgoz A, Bayram M, Ulker M. Initial repair bond strength of a nano-filled hybrid resin: effect of surface treatments and bonding agents. J Esthet Restor Dent. 2009;21(4):251–60. doi:10.1111/j.1708-8240.2009.00271.x.

    Article  PubMed  Google Scholar 

  85. Mitsaki-Matsou H, Karanika-Kouma A, Papadoyiannis Y, Theodoridou-Pahine S. An in vitro study of the tensile strength of composite resins repaired with the same or another composite resin. Quintessence Int. 1991;22(6):475–81.

    PubMed  Google Scholar 

  86. Swift EJ Jr, LeValley BD, Boyer DB. Evaluation of new methods for composite repair. Dent Mater. 1992;8(6):362–5.

    Article  PubMed  Google Scholar 

  87. Roumanas ED. The frequency of replacement of dental restorations may vary based on a number of variables, including type of material, size of the restoration, and caries risk of the patient. J Evid Based Dent Pract. 2010;10(1):23–4. doi:10.1016/j.jebdp.2009.11.009.

    Article  PubMed  Google Scholar 

  88. Passos SP, Ozcan M, Vanderlei AD, Leite FP, Kimpara ET, Bottino MA. Bond strength durability of direct and indirect composite systems following surface conditioning for repair. J Adhes Dent. 2007;9(5):443–7.

    PubMed  Google Scholar 

  89. Celik C, Cehreli SB, Arhun N. Resin composite repair: quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments. Eur J Dent. 2015;9(1):92–9. doi:10.4103/1305-7456.149652.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Valente LL, Silva MF, Fonseca AS, Munchow EA, Isolan CP, Moraes RR. Effect of diamond bur grit size on composite repair. J Adhes Dent. 2015;17(3):257–63. doi:10.3290/j.jad.a34398.

    PubMed  Google Scholar 

  91. Oliveira SS, Pugach MK, Hilton JF, Watanabe LG, Marshall SJ, Marshall GW Jr. The influence of the dentin smear layer on adhesion: a self-etching primer vs. a total-etch system. Dent Mater. 2003;19(8):758–67.

    Article  PubMed  Google Scholar 

  92. Tani C, Finger WJ. Effect of smear layer thickness on bond strength mediated by three all-in-one self-etching priming adhesives. J Adhes Dent. 2002;4(4):283–9.

    PubMed  Google Scholar 

  93. Papacchini F, Dall'Oca S, Chieffi N, Goracci C, Sadek FT, Suh BI, et al. Composite-to-composite microtensile bond strength in the repair of a microfilled hybrid resin: effect of surface treatment and oxygen inhibition. J Adhes Dent. 2007;9(1):25–31.

    PubMed  Google Scholar 

  94. Joulaei M, Bahari M, Ahmadi A, Savadi OS. Effect of different surface treatments on repair micro-shear bond strength of silica- and zirconia-filled composite resins. J Dent Res Dent Clin Dent Prospects. 2012;6(4):131–7. doi:10.5681/joddd.2012.027.

    PubMed  PubMed Central  Google Scholar 

  95. Spyrou M, Koliniotou-Koumpia E, Kouros P, Koulaouzidou E, Dionysopoulos P. The reparability of contemporary composite resins. Eur J Dent. 2014;8(3):353–9. doi:10.4103/1305-7456.137647.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rathke A, Tymina Y, Haller B. Effect of different surface treatments on the composite-composite repair bond strength. Clin Oral Investig. 2009;13(3):317–23. doi:10.1007/s00784-008-0228-2.

    Article  PubMed  Google Scholar 

  97. Burnett LH Jr, Shinkai RS, Eduardo CP. Tensile bond strength of a one-bottle adhesive system to indirect composites treated with Er:YAG laser, air abrasion, or fluoridric acid. Photomed Laser Surg. 2004;22(4):351–6. doi:10.1089/pho.2004.22.351.

    Article  PubMed  Google Scholar 

  98. Ozel Bektas O, Eren D, Herguner Siso S, Akin GE. Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin. Lasers Med Sci. 2012;27(4):723–8. doi:10.1007/s10103-011-0958-2.

    Article  PubMed  Google Scholar 

  99. Kimyai S, Mohammadi N, Navimipour EJ, Rikhtegaran S. Comparison of the effect of three mechanical surface treatments on the repair bond strength of a laboratory composite. Photomed Laser Surg. 2010;28(Suppl 2):S25–30. doi:10.1089/pho.2009.2598.

    PubMed  Google Scholar 

  100. Shahabi S, Chiniforush N, Juybanpoor N. Morphological changes of human dentin after erbium-doped yttrium aluminum garnet (Er:YAG) and carbon dioxide (CO2) laser irradiation and acid-etch technique: an scanning electron microscopic (SEM) evaluation. J Lasers Med Sci. 2013;4(1):48–52.

    PubMed  PubMed Central  Google Scholar 

  101. Chiniforush N, Nokhbatolfoghahaei H, Monzavi A, Pordel E, Ashnagar S. Surface treatment by different parameters of Erbium:Yttrium-Aluminum-Garnet (Er:YAG) laser: Scanning Electron Microscope (SEM) evaluation. J Lasers Med Sci. 2016;7(1):37–9. doi:10.15171/jlms.2016.08.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Alizadeh Oskoee P, Mohammadi N, Ebrahimi Chaharom ME, Kimyai S, Pournaghi Azar F, Rikhtegaran S, et al. Effect of surface treatment with Er;Cr:YSSG, Nd:YAG, and CO2 lasers on repair shear bond strength of a Silorane-based composite resin. J Dent Res Dent Clin Dent Prospects. 2013;7(2):61–6. doi:10.5681/joddd.2013.011.

    PubMed  PubMed Central  Google Scholar 

  103. Shiu P, De Souza-Zaroni WC, Eduardo Cde P, Youssef MN. Effect of feldspathic ceramic surface treatments on bond strength to resin cement. Photomed Laser Surg. 2007;25(4):291–6. doi:10.1089/pho.2007.2018.

    Article  PubMed  Google Scholar 

  104. van As G. Erbium lasers in dentistry. Dent Clin N Am. 2004;48(4):1017–1059., viii. doi:10.1016/j.cden.2004.06.001.

    Article  PubMed  Google Scholar 

  105. Iaria G. Clinical, morphological, and ultrastructural aspects with the use of Er:YAG and Er,Cr:YSGG lasers in restorative dentistry. Gen Dent. 2008;56(7):636–9.

    PubMed  Google Scholar 

  106. Alizadeh Oskoee P, Kimyai S, Talatahari E, Rikhtegaran S, Pournaghi-Azar F, Sajadi OJ. Effect of mechanical surface treatment on the repair bond strength of the Silorane-based composite resin. J Dent Res Dent Clin Dent Prospects. 2014;8(2):61–6. doi:10.5681/joddd.2014.011.

    PubMed  PubMed Central  Google Scholar 

  107. Lizarelli Rde F, Moriyama LT, Bagnato VS. Ablation of composite resins using Er:YAG laser--comparison with enamel and dentin. Lasers Surg Med. 2003;33(2):132–9. doi:10.1002/lsm.10196.

    Article  PubMed  Google Scholar 

  108. Duran I, Ural C, Yilmaz B, Tatar N. Effects of Er:YAG laser pretreatment with different energy levels on bond strength of repairing composite materials. Photomed Laser Surg. 2015;33(6):320–5. doi:10.1089/pho.2014.3859.

    Article  PubMed  Google Scholar 

  109. Murray AK, Attrill DC, Dickinson MR. The effects of XeCl laser etching of Ni-Cr alloy on bond strengths to composite resin: a comparison with sandblasting procedures. Dent Mater. 2005;21(6):538–44. doi:10.1016/j.dental.2004.07.021.

    Article  PubMed  Google Scholar 

  110. Etemadi A, Shahabi S, Chiniforush N, Pordel E, Azarbayejani Z, Heidari S. Scanning electron microscope (SEM) evaluation of composite surface irradiated by different powers of Er:YAG laser. J Lasers Med Sci. 2015;6(2):80–4.

    PubMed  PubMed Central  Google Scholar 

  111. Gokce B, Ozpinar B, Dundar M, Comlekoglu E, Sen BH, Gungor MA. Bond strengths of all-ceramics: acid vs laser etching. Oper Dent. 2007;32(2):173–8. doi:10.2341/06-52.

    Article  PubMed  Google Scholar 

  112. Tugut F, Akin H, Mutaf B, Akin GE, Ozdemir AK. Strength of the bond between a silicone lining material and denture resin after Er:YAG laser treatments with different pulse durations and levels of energy. Lasers Med Sci. 2012;27(2):281–5. doi:10.1007/s10103-010-0862-1.

    Article  PubMed  Google Scholar 

  113. Rossato DM, Bandeca MC, Saade EG, Lizarelli RFZ, Bagnato VS, Saad JRC. Influence of Er:YAG laser on surface treatment of aged composite resin to repair restoration. Laser Phys. 2009;19(11):2144–9. doi:10.1134/S1054660x09210105.

    Article  Google Scholar 

  114. Papacchini F, Toledano M, Monticelli F, Osorio R, Radovic I, Polimeni A, et al. Hydrolytic stability of composite repair bond. Eur J Oral Sci. 2007;115(5):417–24. doi:10.1111/j.1600-0722.2007.00475.x.

    Article  PubMed  Google Scholar 

  115. Hannig C, Hahn P, Thiele PP, Attin T. Influence of different repair procedures on bond strength of adhesive filling materials to etched enamel in vitro. Oper Dent. 2003;28(6):800–7.

    PubMed  Google Scholar 

  116. Kim MJ, Kim YK, Kim KH, Kwon TY. Shear bond strengths of various luting cements to zirconia ceramic: surface chemical aspects. J Dent. 2011;39(11):795–803. doi:10.1016/j.jdent.2011.08.012.

    Article  PubMed  Google Scholar 

  117. Eliasson ST, Tibballs J, Dahl JE. Effect of different surface treatments and adhesives on repair bond strength of resin composites after one and 12 months of storage using an improved microtensile test method. Oper Dent. 2014;39(5):E206–16. doi:10.2341/12-429-L.

    Article  PubMed  Google Scholar 

  118. Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR, et al. Water sorption/solubility of dental adhesive resins. Dent Mater. 2006;22(10):973–80. doi:10.1016/j.dental.2005.11.020.

    Article  PubMed  Google Scholar 

  119. Mousavinasab SM, Farhadi A, Shabanian M. Effect of storage time, thermocycling and resin coating on durability of dentin bonding systems. Dent Res J (Isfahan). 2009;6(1):29–37.

    Google Scholar 

  120. R P, Bs S, Arunagiri D, Manuja N. Influence of hydrophobic layer and delayed placement of composite on the marginal adaptation of two self-etch adhesives. J Conserv Dent. 2009;12(2):60–4. doi:10.4103/0972-0707.55619.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pushpa R, Suresh BS. Marginal permeability of one step self-etch adhesives: effects of double application or the application of hydrophobic layer. J Conserv Dent. 2010;13(3):141–4. doi:10.4103/0972-0707.71646.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Manuja N, Nagpal R, Pandit IK. Dental adhesion: mechanism, techniques and durability. J Clin Pediatr Dent. 2012;36(3):223–34.

    Article  PubMed  Google Scholar 

  123. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent. 2003;28(3):215–35.

    PubMed  Google Scholar 

  124. Teixeira EC, Bayne SC, Thompson JY, Ritter AV, Swift EJ. Shear bond strength of self-etching bonding systems in combination with various composites used for repairing aged composites. J Adhes Dent. 2005;7(2):159–64.

    PubMed  Google Scholar 

  125. Yokokawa M, Rikuta A, Tsujimoto A, Tsuchiya K, Shibasaki S, Matsuyoshi S, et al. Influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives. Eur J Oral Sci. 2015;123(1):46–52. doi:10.1111/eos.12164.

    Article  PubMed  Google Scholar 

  126. Swift EJ Jr, Cloe BC, Boyer DB. Effect of a silane coupling agent on composite repair strengths. Am J Dent. 1994;7(4):200–2.

    PubMed  Google Scholar 

  127. Brendeke J, Ozcan M. Effect of physicochemical aging conditions on the composite-composite repair bond strength. J Adhes Dent. 2007;9(4):399–406.

    PubMed  Google Scholar 

  128. Turner CW, Meiers JC. Repair of an aged, contaminated indirect composite resin with a direct, visible-light-cured composite resin. Oper Dent. 1993;18(5):187–94.

    PubMed  Google Scholar 

  129. Lagouvardos PE, Pissis P, Kyritsis A, Daoukaki D. Water sorption and water-induced molecular mobility in dental composite resins. J Mater Sci Mater Med. 2003;14(9):753–9.

    Article  PubMed  Google Scholar 

  130. Karaman E, Gonulol N. Does the light source affect the repairability of composite resins? Braz Oral Res. 2014;28.

    Google Scholar 

  131. Bacchi A, Consani RL, Sinhoreti MA, Feitosa VP, Cavalcante LM, Pfeifer CS, et al. Repair bond strength in aged methacrylate- and silorane-based composites. J Adhes Dent. 2013;15(5):447–52. doi:10.3290/j.jad.a29590.

    PubMed  Google Scholar 

  132. Baur V, Ilie N. Repair of dental resin-based composites. Clin Oral Investig. 2013;17(2):601–8. doi:10.1007/s00784-012-0722-4.

    Article  PubMed  Google Scholar 

  133. Moncada G, Angel P, Fernandez E, Alonso P, Martin J, Gordan VV. Bond strength evaluation of nanohybrid resin-based composite repair. Gen Dent. 2012;60(3):230–4.

    PubMed  Google Scholar 

  134. Ozcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater. 2007;23(10):1276–82. doi:10.1016/j.dental.2006.11.007.

    Article  PubMed  Google Scholar 

  135. Sousa AB, Silami FD, da Garcia L, Naves LZ, de Pires-de-Souza F. Effect of various aging protocols and intermediate agents on the bond strength of repaired composites. J Adhes Dent. 2013;15(2):137–44. doi:10.3290/j.jad.a29513.

    PubMed  Google Scholar 

  136. Jefferies SR. The art and science of abrasive finishing and polishing in restorative dentistry. Dent Clin N Am. 1998;42(4):613–27.

    PubMed  Google Scholar 

  137. Marghalani HY. Effect of finishing/polishing systems on the surface roughness of novel posterior composites. J Esthet Restor Dent. 2010;22(2):127–38. doi:10.1111/j.1708-8240.2010.00324.x.

    Article  PubMed  Google Scholar 

  138. Park J, Chang J, Ferracane J, Lee IB. How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater. 2008;24(11):1501–5. doi:10.1016/j.dental.2008.03.013.

    Article  PubMed  Google Scholar 

  139. Celik C, Cehreli SB, Bagis B, Arhun N. Microtensile bond strength of composite-to-composite repair with different surface treatments and adhesive systems. J Adhes Sci Technol. 2015;28(13):1264–76.

    Article  Google Scholar 

  140. Anfe TE, Agra CM, Vieira GF. Evaluation of sorption, solubility and staining of universal and silorane resin-based composites. Eur J Prosthodont Restor Dent. 2011;19(4):151–4.

    PubMed  Google Scholar 

  141. Cavalcante LM, Schneider LF, Hammad M, Watts DC, Silikas N. Degradation resistance of ormocer- and dimethacrylate-based matrices with different filler contents. J Dent. 2012;40(1):86–90. doi:10.1016/j.jdent.2011.10.012.

    Article  PubMed  Google Scholar 

  142. Ozcan M, Corazza PH, Marocho SM, Barbosa SH, Bottino MA. Repair bond strength of microhybrid, nanohybrid and nanofilled resin composites: effect of substrate resin type, surface conditioning and ageing. Clin Oral Investig. 2013;17(7):1751–8. doi:10.1007/s00784-012-0863-5.

    Article  PubMed  Google Scholar 

  143. Rinastiti M, Ozcan M, Siswomihardjo W, Busscher HJ. Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins. Clin Oral Investig. 2011;15(5):625–33. doi:10.1007/s00784-010-0426-6.

    Article  PubMed  Google Scholar 

  144. Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002;23(8):1819–29.

    Article  PubMed  Google Scholar 

  145. Ivanovas S, Hickel R, Ilie N. How to repair fillings made by silorane-based composites. Clin Oral Investig. 2011;15(6):915–22. doi:10.1007/s00784-010-0473-z.

    Article  PubMed  Google Scholar 

  146. Ghivari S, Chandak M, Manvar N. Role of oxygen inhibited layer on shear bond strength of composites. J Conserv Dent. 2010;13(1):39–41. doi:10.4103/0972-0707.62635.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Burke FJ, Crisp RJ, James A, Mackenzie L, Pal A, Sands P, et al. Two year clinical evaluation of a low-shrink resin composite material in UK general dental practices. Dent Mater. 2011;27(7):622–30. doi:10.1016/j.dental.2011.02.012.

    Article  PubMed  Google Scholar 

  148. Eick JD, Kotha SP, Chappelow CC, Kilway KV, Giese GJ, Glaros AG, et al. Properties of silorane-based dental resins and composites containing a stress-reducing monomer. Dent Mater. 2007;23(8):1011–7. doi:10.1016/j.dental.2006.09.002.

    Article  PubMed  Google Scholar 

  149. Popoff DA, Santa Rosa TT, Ferreira RC, Magalhaes CS, Moreira AN, Mjor IA. Repair of dimethacrylate-based composite restorations by a silorane-based composite: a one-year randomized clinical trial. Oper Dent. 2012;37(5):E1–10. doi:10.2341/11-121-C.

    PubMed  Google Scholar 

  150. Ilie N, Jelen E, Clementino-Luedemann T, Hickel R. Low-shrinkage composite for dental application. Dent Mater J. 2007;26(2):149–55.

    Article  PubMed  Google Scholar 

  151. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater. 2005;21(1):68–74. doi:10.1016/j.dental.2004.10.007.

    Article  PubMed  Google Scholar 

  152. Tezvergil-Mutluay A, Lassila LV, Vallittu PK. Incremental layers bonding of silorane composite: the initial bonding properties. J Dent. 2008;36(7):560–3. doi:10.1016/j.jdent.2008.03.008.

    Article  PubMed  Google Scholar 

  153. Navarra CO, Cadenaro M, Armstrong SR, Jessop J, Antoniolli F, Sergo V, et al. Degree of conversion of Filtek Silorane adhesive system and Clearfil SE bond within the hybrid and adhesive layer: an in situ Raman analysis. Dent Mater. 2009;25(9):1178–85. doi:10.1016/j.dental.2009.05.009.

    Article  PubMed  Google Scholar 

  154. Hamano N, Ino S, Fukuyama T, Hickel R, Kunzelmann KH. Repair of silorane-based composites: microtensile bond strength of silorane-based composites repaired with methacrylate-based composites. Dent Mater J. 2013;32(5):695–701.

    Article  PubMed  Google Scholar 

  155. Giachetti L, Scaminaci Russo D, Baldini M, Goracci C, Ferrari M. Reparability of aged silorane with methacrylate-based resin composite: micro-shear bond strength and scanning electron microscopy evaluation. Oper Dent. 2012;37(1):28–36. doi:10.2341/10-397-L.

    Article  PubMed  Google Scholar 

  156. Wiegand A, Stawarczyk B, Buchalla W, Taubock TT, Ozcan M, Attin T. Repair of silorane composite—using the same substrate or a methacrylate-based composite? Dent Mater. 2012;28(3):e19–25. doi:10.1016/j.dental.2011.10.008.

    Article  PubMed  Google Scholar 

  157. Hamano N, Chiang YC, Nyamaa I, Yamaguchi H, Ino S, Hickel R, et al. Effect of different surface treatments on the repair strength of a nanofilled resin-based composite. Dent Mater J. 2011;30(4):537–45.

    Article  PubMed  Google Scholar 

  158. Ruddell DE, Maloney MM, Thompson JY. Effect of novel filler particles on the mechanical and wear properties of dental composites. Dent Mater. 2002;18(1):72–80.

    Article  PubMed  Google Scholar 

  159. Bijelic-Donova J, Garoushi S, Lassila LV, Keulemans F, Vallittu PK. Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite. J Dent. 2016;52:70–8. doi:10.1016/j.jdent.2016.07.009.

    Article  PubMed  Google Scholar 

  160. Xu HH, Schumacher GE, Eichmiller FC, Peterson RC, Antonucci JM, Mueller HJ. Continuous-fiber preform reinforcement of dental resin composite restorations. Dent Mater. 2003;19(6):523–30.

    Article  PubMed  Google Scholar 

  161. Drummond JL, Lin L, Al-Turki LA, Hurley RK. Fatigue behaviour of dental composite materials. J Dent. 2009;37(5):321–30. doi:10.1016/j.jdent.2008.12.008.

    Article  PubMed  Google Scholar 

  162. Omran TA, Garoushi S, Abdulmajeed AA, Lassila LV, Vallittu PK. Influence of increment thickness on dentin bond strength and light transmission of composite base materials. Clin Oral Investig. 2016. doi:10.1007/s00784-016-1953-6.

  163. Garoushi S, Sailynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater. 2013;29(8):835–41. doi:10.1016/j.dental.2013.04.016.

    Article  PubMed  Google Scholar 

  164. Tsujimoto A, Barkmeier WW, Takamizawa T, Watanabe H, Johnson WW, Latta MA, et al. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. Eur J Oral Sci. 2016;124(5):480–9. doi:10.1111/eos.12291.

    Article  PubMed  Google Scholar 

  165. Ariyoshi M, Nikaido T, Foxton RM, Tagami J. Influence of filling technique and curing mode on the bond strengths of composite cores to pulpal floor dentin. Dent Mater J. 2010;29(5):562–9.

    Article  PubMed  Google Scholar 

  166. Kournetas N, Tzoutzas I, Eliades G. Monomer conversion in dual-cured core buildup materials. Oper Dent. 2011;36(1):92–7. doi:10.2341/10-145-LR.

    Article  PubMed  Google Scholar 

  167. Taubock TT, Bortolotto T, Buchalla W, Attin T, Krejci I. Influence of light-curing protocols on polymerization shrinkage and shrinkage force of a dual-cured core build-up resin composite. Eur J Oral Sci. 2010;118(4):423–9. doi:10.1111/j.1600-0722.2010.00746.x.

    Article  PubMed  Google Scholar 

  168. Sunada N, Ishii R, Shiratsuchi K, Shimizu Y, Tsubota K, Kurokawa H, et al. Ultrasonic measurement of the effects of adhesive application and power density on the polymerization behavior of core build-up resins. Acta Odontol Scand. 2013;71(1):137–43. doi:10.3109/00016357.2011.654252.

    Article  PubMed  Google Scholar 

  169. El-Deeb HA, Ghalab RM, Elsayed Akah MM, Mobarak EH. Repair bond strength of dual-cured resin composite core buildup materials. J Adv Res. 2016;7(2):263–9. doi:10.1016/j.jare.2015.06.003.

    Article  PubMed  Google Scholar 

  170. El-Askary FS, El-Banna AH, van Noort R. Immediate vs delayed repair bond strength of a nanohybrid resin composite. J Adhes Dent. 2012;14(3):265–74. doi:10.3290/j.jad.a22716.

    PubMed  Google Scholar 

  171. Frankenberger R, Kramer N, Sindel J. Repair strength of etched vs silica-coated metal-ceramic and all-ceramic restorations. Oper Dent. 2000;25(3):209–15.

    PubMed  Google Scholar 

  172. Moncada G, Martin J, Fernandez E, Hempel MC, Mjor IA, Gordan VV. Sealing, refurbishment and repair of class I and class II defective restorations: a three-year clinical trial. J Am Dent Assoc. 2009;140(4):425–32.

    Article  PubMed  Google Scholar 

  173. Perriard J, Lorente MC, Scherrer S, Belser UC, Wiskott HW. The effect of water storage, elapsed time and contaminants on the bond strength and interfacial polymerization of a nanohybrid composite. J Adhes Dent. 2009;11(6):469–78. doi:10.3290/j.jad.a18141.

    PubMed  Google Scholar 

  174. Opdam NJ, Bronkhorst EM, Loomans BA, Huysmans MC. Longevity of repaired restorations: a practice based study. J Dent. 2012;40(10):829–35. doi:10.1016/j.jdent.2012.06.007.

    Article  PubMed  Google Scholar 

  175. Sharif MO, Fedorowicz Z, Tickle M, Brunton PA. Repair or replacement of restorations: do we accept built in obsolescence or do we improve the evidence? Br Dent J. 2010;209(4):171–4. doi:10.1038/sj.bdj.2010.722.

    Article  PubMed  Google Scholar 

  176. Demarco FF, Correa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28(1):87–101. doi:10.1016/j.dental.2011.09.003.

    Article  PubMed  Google Scholar 

  177. Da Rosa Rodolpho PA, Donassollo TA, Cenci MS, Loguercio AD, Moraes RR, Bronkhorst EM, et al. 22-year clinical evaluation of the performance of two posterior composites with different filler characteristics. Dent Mater. 2011;27(10):955–63. doi:10.1016/j.dental.2011.06.001.

    Article  PubMed  Google Scholar 

  178. Fernandez EM, Martin JA, Angel PA, Mjor IA, Gordan VV, Moncada GA. Survival rate of sealed, refurbished and repaired defective restorations: 4-year follow-up. Braz Dent J. 2011;22(2):134–9.

    Article  PubMed  Google Scholar 

  179. Gordan VV, Riley JL 3rd, Blaser PK, Mondragon E, Garvan CW, Mjor IA. Alternative treatments to replacement of defective amalgam restorations: results of a seven-year clinical study. J Am Dent Assoc. 2011;142(7):842–9.

    Article  PubMed  Google Scholar 

  180. Gordan VV, Garvan CW, Richman JS, Fellows JL, Rindal DB, Qvist V, et al. How dentists diagnose and treat defective restorations: evidence from the dental practice-based research network. Oper Dent. 2009;34(6):664–73. doi:10.2341/08-131-C.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Popoff DA, de Magalhaes CS, de Freitas OW, Soares LA, de Almeida Santa Rosa TT, Ferreira RC, et al. Two-year clinical performance of dimethacrylate based composite restorations repaired with a silorane-based composite. J Adhes Dent. 2014;16(6):575–83. doi:10.3290/j.jad.a33196.

    PubMed  Google Scholar 

  182. Fernandez E, Martin J, Vildosola P, Oliveira Junior OB, Gordan V, Mjor I, et al. Can repair increase the longevity of composite resins? Results of a 10-year clinical trial. J Dent. 2015;43(2):279–86. doi:10.1016/j.jdent.2014.05.015.

    Article  PubMed  Google Scholar 

  183. Blunck U. Pretreatment of composite resin surfaces for repair: why and how. J Adhes Dent. 2013;15(6):592. doi:10.3290/j.jad.a31110.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neslihan Arhun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arhun, N., Tuncer, D. (2018). Repair of Direct Resin Composite Restorations. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics