Skip to main content

Longitudinal Parameter Estimation in 3D Electromechanical Models: Application to Cardiovascular Changes in Digestion

  • Conference paper
  • First Online:
Book cover Functional Imaging and Modelling of the Heart (FIMH 2017)

Abstract

Computer models of the heart are of increasing interest for clinical applications due to their discriminative and predictive abilities. However the number of simulation parameters in these models can be high and expert knowledge is required to properly design studies involving these models, and analyse the results. In particular it is important to know how the parameters vary in various clinical or physiological settings. In this paper we build a data-driven model of cardiovascular parameter evolution during digestion, from a clinical study involving more than 80 patients. We first present a method for longitudinal parameter estimation in 3D cardiac models, which we apply to 21 patient-specific hearts geometries at two instants of the study, for 6 parameters (two fixed and four time-varying parameters). From these personalised hearts, we then extract and validate a law which links the changes of cardiac output and heart rate under constant arterial pressure to the evolution of these parameters, thus enabling the fast simulation of hearts during digestion for future patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laughlin, M.H.: Cardiovascular response to exercise. Am. J. Physiol. 277(6 Pt 2), S244–S259 (1999)

    Google Scholar 

  2. Chabiniok, R., et al.: Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6(2), 20150083 (2016)

    Article  Google Scholar 

  3. Hauser, J.A., et al.: Comprehensive assessment of the global and regional vascular responses to food ingestion in humans using novel rapid MRI. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310(6), R541–R545 (2016)

    Article  Google Scholar 

  4. Otsuki, T., et al.: Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta physiologica 188(1), 15–20 (2006)

    Article  Google Scholar 

  5. Albert, R.E., et al.: The response of the peripheral venous pressure to exercise in congestive heart failure. Am. Heart J. 43(3), 395–400 (1952)

    Article  Google Scholar 

  6. Molléro, R., et al.: Propagation of myocardial fibre architecture uncertainty on electromechanical model parameter estimation: a case study. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 448–456. Springer, Cham (2015). doi:10.1007/978-3-319-20309-6_51

    Chapter  Google Scholar 

  7. Westerhof, N., et al.: The arterial windkessel. Med. Biol. Eng. Comput. 47(2), 131–141 (2009)

    Article  Google Scholar 

  8. Sermesant, M., Konukog̃lu, E., Delingette, H., Coudière, Y., Chinchapatnam, P., Rhode, K.S., Razavi, R., Ayache, N.: An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 160–169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72907-5_17

    Chapter  Google Scholar 

  9. Pernod, E., et al.: A multi-front eikonal model of cardiac electrophysiology for interactive simulation of radio-frequency ablation. Comput. Graph. 35(2), 431–440 (2011)

    Article  Google Scholar 

  10. Chapelle, D., et al.: Energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Comput. Eng. 10(2), 189–211 (2012)

    Article  Google Scholar 

  11. Marchesseau, S.: Simulation of patient-specific cardiac models for therapy planning. Thesis, Ecole Nationale Supérieure des Mines de Paris (2013)

    Google Scholar 

  12. Mollero, R., Pennec, X., Delingette, H., Ayache, N., Sermesant, M.: A multiscale cardiac model for fast personalisation and exploitation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 174–182. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_21

    Chapter  Google Scholar 

  13. Peherstorfer, B., et al.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization (2016)

    Google Scholar 

Download references

Ackowledgements

This work has been partially funded by the EU FP7-funded project MD-Paedigree (Grant Agreement 600932) and contributes to the objectives of the ERC advanced grant MedYMA (2011-291080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roch Mollero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mollero, R. et al. (2017). Longitudinal Parameter Estimation in 3D Electromechanical Models: Application to Cardiovascular Changes in Digestion. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics