Skip to main content

Intravenous Sedatives and Analgesics

  • Chapter
  • First Online:
Book cover Critical Care Sedation

Abstract

Critically ill patients often require sedative and analgesic drugs to optimize patient comfort, facilitate patient-ventilator synchrony, and allow tolerance to procedures. The level of sedation can change during a patient’s stay and an optimal degree of sedation is necessary to avoid the risk of oversedation and to reduce the risk of delirium, the length of mechanical ventilation, and the length of stay in the ICU.

The ideal analgesic or sedative agent is characterized by many properties, for example: (a) a short onset time of action, (b) easy to administer and to titrate in order to produce effective sedation, (c) reproducible in dosage to obtain a similar clinical goal in a large and varied population, (d) predictable with regard to clinical and side effects, (e) free from severe adverse effects on hemodynamic conditions or respiratory function. Furthermore, drug metabolism should not be affected by impaired organ function, drug interactions or augmented volume of distribution, and it should not be protein bound. The offset time should be short enough to rapidly reverse sedation. Several new drugs have been developed, some of very closely meet these ideal features. The aim of this chapter is to review the pharmacology, in terms of pharmacokinetic (PK), pharmacodynamic (PD), and pharmacogenetic factors, of most commonly used sedatives (propofol, benzodiazepines, α2-agonists) and opioid analgesics. In addition, important issues for daily clinical analgo-sedation practice aimed at improving patients’ comfort, treatment outcome, and safety are specifically addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sessler CN, Varney K. Patient-focused sedation and analgesia in the ICU. Chest [Internet]. 2008 Feb [cited 2017 Mar 7];133(2):552–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0012369215491081

  2. Barr J, Fraser GL, Puntillo K, Ely EW, Gélinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med [Internet]. 2013 Jan [cited 2017 Mar 7];41(1):263–306. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23269131

  3. Jacobi J, Fraser GL, Coursin DB, Riker RR, Fontaine D, Wittbrodt ET, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med [Internet]. 2002 Jan [cited 2017 Mar 7];30(1):119–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11902253

  4. Shehabi Y, Bellomo R, Mehta S, Riker R, Takala J. Intensive care sedation: the past, present and the future. Crit Care [Internet]. 2013 [cited 2017 Mar 7];17(3):322. Available from: http://ccforum.biomedcentral.com/articles/10.1186/cc12679

  5. Hansen-Flaschen JH, Brazinsky S, Basile C, Lanken PN. Use of sedating drugs and neuromuscular blocking agents in patients requiring mechanical ventilation for respiratory failure. A national survey. JAMA [Internet]. 1991 Nov 27 [cited 2017 Mar 7];266(20):2870–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1942456

  6. Reappraisal of lytic cocktail/demerol, phenergan, and thorazine (DPT) for the sedation of children. American Academy of Pediatrics Committee on Drugs. Pediatrics [Internet]. 1995 Apr [cited 2017 Mar 7];95(4):598–602. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7700765

  7. Smith C, Rowe RD, Vlad P. Sedation of children for cardiac catheterization with an ataractic mixture. Can Anaesth Soc J [Internet]. 1958 Jan [cited 2017 Mar 7];5(1):35–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13489524

  8. Winter CA. The potentiating effect of antihistaminic drugs upon the sedative action of barbiturates. J Pharmacol Exp Ther [Internet]. 1948 Sep [cited 2017 Mar 7];94(1):7–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18885607

  9. Brodie BB, Shore PA, Silver SL. Potentiating action of chlorpromazine and reserpine. Nature [Internet]. 1955 Jun 25 [cited 2017 Mar 7];175(4469):1133–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14394132

  10. Dundee JW. Chlorpromazine as an adjuvant in the relief of chronic pain. Br J Anaesth [Internet]. 1957 Jan [cited 2017 Mar 7];29(1):28–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13404176

  11. Dundee JW, Nicholl RM, Clarke RS, Moore J, Love WJ. Studies of drugs given before anaesthesia. VII. Pethidine-phenothiazine combinations. Br J Anaesth [Internet]. 1965 Aug [cited 2017 Mar 7];37(8):601–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5319076

  12. Dundee JW, Clarke RSJ, Loan WB. A comparison of the sedative and toxic effects of morphine and pethidine. Lancet. 1965;286(7425):1262–3.

    Article  Google Scholar 

  13. Laborit H, Huguenard P. [Present technic of artificial hibernation]. Presse Med [Internet]. 1952 Oct 25 [cited 2017 Mar 7];60(68):1455–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13027061

  14. Wunsch H, Kahn JM, Kramer AA, Rubenfeld GD. Use of intravenous infusion sedation among mechanically ventilated patients in the United States. Crit Care Med [Internet]. 2009 Dec [cited 2017 Mar 7];37(12):3031–9. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003246-200912000-00005

  15. Dasta JF, Fuhrman TM, McCandles C. Patterns of prescribing and administering drugs for agitation and pain in patients in a surgical intensive care unit. Crit Care Med [Internet]. 1994 Jun [cited 2017 Mar 7];22(6):974–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8205830

  16. Watling SM, Dasta JF, Seidl EC. Sedatives, analgesics, and paralytics in the ICU. Ann Pharmacother [Internet]. 1997 Feb [cited 2017 Mar 7];31(2):148–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9034412

  17. Soliman HM, Mélot C, Vincent JL. Sedative and analgesic practice in the intensive care unit: the results of a European survey. Br J Anaesth [Internet]. 2001 Aug [cited 2017 Mar 7];87(2):186–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11493487

  18. Wagner BK, O’Hara DA. Pharmacokinetics and pharmacodynamics of sedatives and analgesics in the treatment of agitated critically ill patients. Clin Pharmacokinet [Internet]. 1997 Dec [cited 2017 Mar 7];33(6):426–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9435992

  19. Devlin JW, Barletta JF. Chapter 21: Principles of drug dosing in critically ill patients. In: Parrillo J, Dellinger R, editors. Critical care medicine: principles of diagnosis and management in the adult. 3rd ed. Philadelphia: Mosby; 2008. p. 343–76.

    Chapter  Google Scholar 

  20. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron [Internet]. 1976 [cited 2017 Mar 7];16(1):31–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1244564

  21. Power BM, Forbes AM, van Heerden PV, Ilett KF. Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet [Internet]. 1998 Jan [cited 2017 Mar 7];34(1):25–56. Available from: http://link.springer.com/10.2165/00003088-199834010-00002

  22. Bodenham A, Shelly MP, Park GR. The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clin Pharmacokinet [Internet]. 1988 Jun [cited 2017 Mar 7];14(6):347–73. Available from: http://link.springer.com/10.2165/00003088-198814060-00003

  23. Spina SP, Ensom MHH. Clinical pharmacokinetic monitoring of midazolam in critically ill patients. Pharmacotherapy [Internet]. 2007 Mar [cited 2017 Mar 7];27(3):389–98. Available from: http://doi.wiley.com/10.1592/phco.27.3.389

  24. Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther [Internet]. 2007 Mar [cited 2017 Mar 7];81(3):429–44. Available from: http://doi.wiley.com/10.1038/sj.clpt.6100095

  25. Lötsch J, Skarke C, Liefhold J, Geisslinger G. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet [Internet]. 2004 [cited 2017 Mar 7];43(14):983–1013. Available from: http://link.springer.com/10.2165/00003088-200443140-00003

  26. Smith HS. Variations in opioid responsiveness. Pain Physician [Internet]. [cited 2017 Mar 7];11(2):237–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18354715

  27. Fredheim OMS, Moksnes K, Borchgrevink PC, Kaasa S, Dale O. Clinical pharmacology of methadone for pain. Acta Anaesthesiol Scand [Internet]. 2008 Aug 7 [cited 2017 Mar 7];52(7):879–89. Available from: http://doi.wiley.com/10.1111/j.1399-6576.2008.01597.x

  28. Bergbom-Engberg I, Haljamäe H. Assessment of patients’ experience of discomforts during respirator therapy. Crit Care Med [Internet]. 1989 Oct [cited 2017 Mar 7];17(10):1068–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2791570

  29. Rotondi AJ, Chelluri L, Sirio C, Mendelsohn A, Schulz R, Belle S, et al. Patients’ recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Crit Care Med [Internet]. 2002 Apr [cited 2017 Mar 7];30(4):746–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11940739

  30. Stein-Parbury J, McKinley S. Patients’ experiences of being in an intensive care unit: a select literature review. Am J Crit Care [Internet]. 2000 Jan [cited 2017 Mar 7];9(1):20–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10631387

  31. Reves J, Glass PS, Lubarsky D, McEvoy M, Martinez-Ruiz R. Intravenous anesthetics. In: Miller R, Erikkson L, Fleisher L, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 719–69.

    Chapter  Google Scholar 

  32. Reisine T. Opiate receptors. Neuropharmacology [Internet]. 1995 May [cited 2017 Mar 7];34(5):463–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7566479

  33. Gutstein H, Akil H. Opioid analgesics. In: Brunton L, Lazo J, Parker K, editors. Goodman and Gilman’s the pharmacologic bases of therapeutics. 11th ed. New York: McGraw-Hill; 2006. p. 547–90.

    Google Scholar 

  34. Fields HL, Heinricher MM, Mason P. Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci [Internet]. 1991 Mar [cited 2017 Mar 7];14(1):219–45. Available from: http://www.annualreviews.org/doi/10.1146/annurev.ne.14.030191.001251

  35. Bouchard N, Nelson L. Opioids. In: Vincent J, Abraham E, Moore F, editors. The textbook of critical care. 6th ed. Philadelphia: Elsevier Saunders; 2011. p. 1354–61.

    Chapter  Google Scholar 

  36. Eckenhoff JE, Oech SR. The effects of narcotics and antagonists upon respiration and circulation in man. A review. Clin Pharmacol Ther [Internet]. [cited 2017 Mar 7];1:483–524. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13819208

  37. Shook JE, Watkins WD, Camporesi EM. Differential roles of opioid receptors in respiration, respiratory disease, and opiate-induced respiratory depression. Am Rev Respir Dis [Internet]. 1990 Oct [cited 2017 Mar 7];142(4):895–909. Available from: http://www.atsjournals.org/doi/abs/10.1164/ajrccm/142.4.895

  38. Weil J V, McCullough RE, Kline JS, Sodal IE. Diminished ventilatory response to hypoxia and hypercapnia after morphine in normal man. N Engl J Med [Internet]. 1975 May 22 [cited 2017 Mar 7];292(21):1103–6. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM197505222922106

  39. Fahmy NR, Sunder N, Soter NA. Role of histamine in the hemodynamic and plasma catecholamine responses to morphine. Clin Pharmacol Ther [Internet]. 1983 May [cited 2017 Mar 7];33(5):615–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6839633

  40. Barke KE, Hough LB. Opiates, mast cells and histamine release. Life Sci [Internet]. 1993 [cited 2017 Mar 7];53(18):1391–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7694026

  41. Flacke JW, Flacke WE, Bloor BC, Van Etten AP, Kripke BJ. Histamine release by four narcotics: a double-blind study in humans. Anesth Analg [Internet]. 1987 Aug [cited 2017 Mar 7];66(8):723–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2440351

  42. Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. AAPS J [Internet]. 2008 Dec 7 [cited 2017 Mar 7];10(4):537–51. Available from: http://www.springerlink.com/index/10.1208/s12248-008-9056-1

  43. Tobias JD. Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Crit Care Med [Internet]. 2000 Jun [cited 2017 Mar 7];28(6):2122–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10890677

  44. Gaudreau J-D, Gagnon P, Roy M-A, Harel F, Tremblay A. Opioid medications and longitudinal risk of delirium in hospitalized cancer patients. Cancer [Internet]. 2007 Jun 1 [cited 2017 Mar 7];109(11):2365–73. Available from: http://doi.wiley.com/10.1002/cncr.22665

  45. Lugo RA, MacLaren R, Cash J, Pribble CG, Vernon DD. Enteral methadone to expedite fentanyl discontinuation and prevent opioid abstinence syndrome in the PICU. Pharmacotherapy [Internet]. 2001 Dec [cited 2017 Mar 7];21(12):1566–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11765307

  46. Meyer MM, Berens RJ. Efficacy of an enteral 10-day methadone wean to prevent opioid withdrawal in fentanyl-tolerant pediatric intensive care unit patients. Pediatr Crit Care Med [Internet]. 2001 Oct [cited 2017 Mar 7];2(4):329–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12793936

  47. Trescot AM, Datta S, Lee M, Hansen H. Opioid pharmacology. Pain Physician [Internet]. 2008 Mar [cited 2017 Mar 7];11(2 Suppl):S133–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18443637

  48. Hall LG, Oyen LJ, Murray MJ. Analgesic agents. Pharmacology and application in critical care. Crit Care Clin [Internet]. 2001 Oct [cited 2017 Mar 7];17(4):899–923, viii. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11762267

  49. Rosow CE, Moss J, Philbin DM, Savarese JJ. Histamine release during morphine and fentanyl anesthesia. Anesthesiology [Internet]. 1982 Feb [cited 2017 Mar 7];56(2):93–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6172999

  50. Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology [Internet]. 1996 Apr [cited 2017 Mar 7];84(4):821–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8638836

  51. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology [Internet]. 1993 Nov [cited 2017 Mar 7];79(5):881–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7902032

  52. Kapila A, Glass PS, Jacobs JR, Muir KT, Hermann DJ, Shiraishi M, et al. Measured context-sensitive half-times of remifentanil and alfentanil. Anesthesiology [Internet]. 1995 Nov [cited 2017 Mar 7];83(5):968–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7486182

  53. Westmoreland CL, Hoke JF, Sebel PS, Hug CC, Muir KT. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology [Internet]. 1993 Nov [cited 2017 Mar 7];79(5):893–903. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7902033

  54. Breen D, Wilmer A, Bodenham A, Bach V, Bonde J, Kessler P, et al. Offset of pharmacodynamic effects and safety of remifentanil in intensive care unit patients with various degrees of renal impairment. Crit Care [Internet]. 2004 Feb [cited 2017 Mar 7];8(1):R21–30. Available from: http://ccforum.biomedcentral.com/articles/10.1186/cc2399

  55. Dershwitz M, Hoke JF, Rosow CE, Michałowski P, Connors PM, Muir KT, et al. Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology [Internet]. 1996 Apr [cited 2017 Mar 7];84(4):812–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8638835

  56. Bajwa S, Kulshrestha A. Dexmedetomidine: an adjuvant making large inroads into clinical practice. Ann Med Health Sci Res [Internet]. 2013 Oct [cited 2017 Mar 7];3(4):475–83. Available from: http://www.amhsr.org/text.asp?2013/3/4/475/122044

  57. Kemp KM, Henderlight L, Neville M. Precedex: is it the future of cooperative sedation? Nursing (Lond) [Internet]. 2008 [cited 2017 Mar 7];7–8. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00152193-200804002-00002

  58. Afsani N. Clinical application of dexmedetomidine. S Afr J Anaesthesiol Analg. 2010;16:50–6.

    Google Scholar 

  59. Panzer O, Moitra V, Sladen RN. Pharmacology of sedative-analgesic agents: dexmedetomidine, remifentanil, ketamine, volatile anesthetics, and the role of peripheral Mu antagonists. Anesthesiol Clin [Internet]. 2011 Dec [cited 2017 Mar 7];29(4):587–605, vii. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1932227511000772

  60. Fairbanks CA, Stone LS, Wilcox GL. Pharmacological profiles of alpha 2 adrenergic receptor agonists identified using genetically altered mice and isobolographic analysis. Pharmacol Ther [Internet]. 2009 Aug [cited 2017 Mar 7];123(2):224–38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S016372580900076X

  61. De Wolf AM, Fragen RJ, Avram MJ, Fitzgerald PC, Rahimi-Danesh F. The pharmacokinetics of dexmedetomidine in volunteers with severe renal impairment. Anesth Analg [Internet]. 2001 Nov [cited 2017 Mar 7];93(5):1205–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11682398

  62. Guo TZ, Jiang JY, Buttermann AE, Maze M. Dexmedetomidine injection into the locus ceruleus produces antinociception. Anesthesiology [Internet]. 1996 Apr [cited 2017 Mar 7];84(4):873–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8638842

  63. Carollo DS, Nossaman BD, Ramadhyani U. Dexmedetomidine: a review of clinical applications. Curr Opin Anaesthesiol [Internet]. 2008 Aug [cited 2017 Mar 7];21(4):457–61. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001503-200808000-00008

  64. Turkmen A, Altan A, Turgut N, Vatansever S, Gokkaya S. The correlation between the Richmond agitation-sedation scale and bispectral index during dexmedetomidine sedation. Eur J Anaesthesiol [Internet]. 2006 Apr [cited 2017 Mar 7];23(4):300–4. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003643-200604000-00006

  65. Bekker A, Sturaitis MK. Dexmedetomidine for neurological surgery. Neurosurgery [Internet]. 2005 Jul [cited 2017 Mar 7];57(1 Suppl):1–10, discussion 1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15987564

  66. Elias WJ, Durieux ME, Huss D, Frysinger RC. Dexmedetomidine and arousal affect subthalamic neurons. Mov Disord [Internet]. 2008 Jul 15 [cited 2017 Mar 7];23(9):1317–20. Available from: http://doi.wiley.com/10.1002/mds.22080

  67. Hsu Y-W, Cortinez LI, Robertson KM, Keifer JC, Sum-Ping ST, Moretti EW, et al. Dexmedetomidine pharmacodynamics: Part I: Crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology [Internet]. 2004 Nov [cited 2017 Mar 7];101(5):1066–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15505441

  68. Arain SR, Ebert TJ. The efficacy, side effects, and recovery characteristics of dexmedetomidine versus propofol when used for intraoperative sedation. Anesth Analg [Internet]. 2002 Aug [cited 2017 Mar 7];95(2):461–6, table of contents. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12145072

  69. Arain SR, Ruehlow RM, Uhrich TD, Ebert TJ. The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg [Internet]. 2004 Jan [cited 2017 Mar 7];98(1):153–8, table of contents. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14693611

  70. Ishii H, Kohno T, Yamakura T, Ikoma M, Baba H. Action of dexmedetomidine on the substantia gelatinosa neurons of the rat spinal cord. Eur J Neurosci [Internet]. 2008 Jun [cited 2017 Mar 7];27(12):3182–90. Available from: http://doi.wiley.com/10.1111/j.1460-9568.2008.06260.x

  71. Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha 2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology [Internet]. 1991 Jan [cited 2017 Mar 7];74(1):3–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1670912

  72. Al-Metwalli RR, Mowafi HA, Ismail SA, Siddiqui AK, Al-Ghamdi AM, Shafi MA, et al. Effect of intra-articular dexmedetomidine on postoperative analgesia after arthroscopic knee surgery. Br J Anaesth [Internet]. 2008 Sep 18 [cited 2017 Mar 7];101(3):395–9. Available from: https://academic.oup.com/bja/article-lookup/doi/10.1093/bja/aen184

  73. Yoshitomi T, Kohjitani A, Maeda S, Higuchi H, Shimada M, Miyawaki T. Dexmedetomidine enhances the local anesthetic action of lidocaine via an alpha-2A adrenoceptor. Anesth Analg [Internet]. 2008 Jul [cited 2017 Mar 7];107(1):96–101. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000539-200807000-00016

  74. Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology [Internet]. 1992 Dec .[cited 2017 Mar 7];77(6):1134–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1361311

  75. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg [Internet]. 2000 Mar [cited 2017 Mar 7];90(3):699–705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10702460

  76. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology [Internet]. 2000 Aug [cited 2017 Mar 7];93(2):382–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10910487

  77. Venn RM, Hell J, Grounds RM. Respiratory effects of dexmedetomidine in the surgical patient requiring intensive care. Crit Care [Internet]. 2000 [cited 2017 Mar 7];4(5):302–8. Available from: http://ccforum.biomedcentral.com/articles/10.1186/cc712

  78. Arpino PA, Kalafatas K, Thompson BT. Feasibility of dexmedetomidine in facilitating extubation in the intensive care unit. J Clin Pharm Ther [Internet]. 2008 Feb 17 [cited 2017 Mar 7];33(1):25–30. Available from: http://doi.wiley.com/10.1111/j.1365-2710.2008.00883.x

  79. Siobal MS, Kallet RH, Kivett VA, Tang JF. Use of dexmedetomidine to facilitate extubation in surgical intensive-care-unit patients who failed previous weaning attempts following prolonged mechanical ventilation: a pilot study. Respir Care [Internet]. 2006 May [cited 2017 Mar 7];51(5):492–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16638158

  80. Akada S, Takeda S, Yoshida Y, Nakazato K, Mori M, Hongo T, et al. The efficacy of dexmedetomidine in patients with noninvasive ventilation: a preliminary study. Anesth Analg [Internet]. 2008 Jul [cited 2017 Mar 7];107(1):167–70. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000539-200807000-00028

  81. Scheinin H, Aantaa R, Anttila M, Hakola P, Helminen A, Karhuvaara S. Reversal of the sedative and sympatholytic effects of dexmedetomidine with a specific alpha2-adrenoceptor antagonist atipamezole: a pharmacodynamic and kinetic study in healthy volunteers. Anesthesiology [Internet]. 1998 Sep [cited 2017 Mar 7];89(3):574–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9743392

  82. Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol [Internet]. 2002 Aug 1 [cited 2017 Mar 7];283(2):R287–95. Available from: http://ajpregu.physiology.org/lookup/doi/10.1152/ajpregu.00123.2002

  83. Takada K, Clark DJ, Davies MF, Tonner PH, Krause TKW, Bertaccini E, et al. Meperidine exerts agonist activity at the alpha(2B)-adrenoceptor subtype. Anesthesiology [Internet]. 2002 Jun [cited 2017 Mar 7];96(6):1420–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12170055

  84. Riker RR, Fraser GL. Adverse events associated with sedatives, analgesics, and other drugs that provide patient comfort in the intensive care unit. Pharmacotherapy [Internet]. 2005 May [cited 2017 Mar 28];25(5 Pt 2):8S–18S. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15899744

  85. Kaur M, Singh PM. Current role of dexmedetomidine in clinical anesthesia and intensive care. Anesth Essays Res [Internet]. 2011 [cited 2017 Mar 28];5(2):128–33. Available from: http://www.aeronline.org/text.asp?2011/5/2/128/94750

  86. Jalonen J, Hynynen M, Kuitunen A, Heikkilä H, Perttilä J, Salmenperä M, et al. Dexmedetomidine as an anesthetic adjunct in coronary artery bypass grafting. Anesthesiology [Internet]. 1997 Feb [cited 2017 Mar 28];86(2):331–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9054252

  87. Kay B, Rolly G. I.C.I. 35868—The effect of a change of formulation on the incidence of pain after intravenous injection. Acta Anaesthesiol Belg [Internet]. 1977 [cited 2017 Mar 7];28(4):317–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/349998

  88. Borgeat A, Wilder-Smith OH, Suter PM. The nonhypnotic therapeutic applications of propofol. Anesthesiology [Internet]. 1994 Mar [cited 2017 Mar 7];80(3):642–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7908179

  89. McKeage K, Perry CM. Propofol: a review of its use in intensive care sedation of adults. CNS Drugs [Internet]. 2003 [cited 2017 Mar 7];17(4):235–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12665397

  90. Veselis RA, Reinsel RA, Wroński M, Marino P, Tong WP, Bedford RF. EEG and memory effects of low-dose infusions of propofol. Br J Anaesth [Internet]. 1992 Sep [cited 2017 Mar 7];69(3):246–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1389841

  91. Bailie GR, Cockshott ID, Douglas EJ, Bowles BJ. Pharmacokinetics of propofol during and after long-term continuous infusion for maintenance of sedation in ICU patients. Br J Anaesth [Internet]. 1992 May [cited 2017 Mar 7];68(5):486–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1642937

  92. Barr J, Egan TD, Sandoval NF, Zomorodi K, Cohane C, Gambus PL, et al. Propofol dosing regimens for ICU sedation based upon an integrated pharmacokinetic-pharmacodynamic model. Anesthesiology [Internet]. 2001 Aug [cited 2017 Mar 7];95(2):324–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11506101

  93. Takizawa D, Hiraoka H, Goto F, Yamamoto K, Horiuchi R. Human kidneys play an important role in the elimination of propofol. Anesthesiology [Internet]. 2005 Feb [cited 2017 Mar 7];102(2):327–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15681947

  94. Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y, et al. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol [Internet]. 2005 Aug [cited 2017 Mar 7];60(2):176–82. Available from: http://doi.wiley.com/10.1111/j.1365-2125.2005.02393.x

  95. Kuipers JA, Boer F, Olieman W, Burm AG, Bovill JG. First-pass lung uptake and pulmonary clearance of propofol: assessment with a recirculatory indocyanine green pharmacokinetic model. Anesthesiology [Internet]. 1999 Dec [cited 2017 Mar 7];91(6):1780–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10598622

  96. Peeters MYM, Bras LJ, DeJongh J, Wesselink RMJ, Aarts LPHJ, Danhof M, et al. Disease severity is a major determinant for the pharmacodynamics of propofol in critically ill patients. Clin Pharmacol Ther [Internet]. 2008 Mar 8 [cited 2017 Mar 7];83(3):443–51. Available from: http://doi.wiley.com/10.1038/sj.clpt.6100309

  97. Kikuchi T, Wang Y, Sato K, Okumura F. In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats. Br J Anaesth [Internet]. 1998 May [cited 2017 Mar 7];80(5):644–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9691870

  98. Kushikata T, Hirota K, Yoshida H, Kubota T, Ishihara H, Matsuki A. Alpha-2 adrenoceptor activity affects propofol-induced sleep time. Anesth Analg [Internet]. 2002 May [cited 2017 Mar 7];94(5):1201–6, table of contents. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11973190

  99. Lingamaneni R, Birch ML, Hemmings HC. Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol. Anesthesiology [Internet]. 2001 Dec [cited 2017 Mar 7];95(6):1460–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11748406

  100. Cechetto DF, Diab T, Gibson CJ, Gelb AW. The effects of propofol in the area postrema of rats. Anesth Analg [Internet]. 2001 Apr [cited 2017 Mar 7];92(4):934–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11273930

  101. Pain L, Gobaille S, Schleef C, Aunis D, Oberling P. In vivo dopamine measurements in the nucleus accumbens after nonanesthetic and anesthetic doses of propofol in rats. Anesth Analg [Internet]. 2002 Oct [cited 2017 Mar 7];95(4):915–9, table of contents. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12351267

  102. McDonald NJ, Mannion D, Lee P, O’Toole DP, O’Boyle C, Keane PK. Mood evaluation and outpatient anaesthesia. A comparison between propofol and thiopentone. Anaesthesia [Internet]. 1988 Mar [cited 2017 Mar 7];43 Suppl:68–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3259102

  103. Vandesteene A, Trempont V, Engelman E, Deloof T, Focroul M, Schoutens A, et al. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia [Internet]. 1988 Mar [cited 2017 Mar 7];43 Suppl:42–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3259095

  104. Steiner LA, Johnston AJ, Chatfield DA, Czosnyka M, Coleman MR, Coles JP, et al. The effects of large-dose propofol on cerebrovascular pressure autoregulation in head-injured patients. Anesth Analg [Internet]. 2003 Aug [cited 2017 Mar 7];97(2):572–6, table of contents. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12873955

  105. Fox J, Gelb AW, Enns J, Murkin JM, Farrar JK, Manninen PH. The responsiveness of cerebral blood flow to changes in arterial carbon dioxide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology [Internet]. 1992 Sep [cited 2017 Mar 7];77(3):453–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1519782

  106. al-Hader A, Hasan M, Hasan Z. The comparative effects of propofol, thiopental, and diazepam, administered intravenously, on pentylenetetrazol seizure threshold in the rabbit. Life Sci [Internet]. 1992 [cited 2017 Mar 7];51(10):779–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1513205

  107. Heavner JE, Arthur J, Zou J, McDaniel K, Tyman-Szram B, Rosenberg PH. Comparison of propofol with thiopentone for treatment of bupivacaine-induced seizures in rats. Br J Anaesth [Internet]. 1993 Nov [cited 2017 Mar 7];71(5):715–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8251286

  108. Chilvers CR, Laurie PS. Successful use of propofol in status epilepticus. Anaesthesia [Internet]. 1990 Nov [cited 2017 Mar 7];45(11):995–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2252214

  109. Maurette P, Simeon F, Castagnera L, Esposito J, Macouillard G, Heraut LA. Propofol anaesthesia alters somatosensory evoked cortical potentials. Anaesthesia [Internet]. 1988 Mar [cited 2017 Mar 7];43 Suppl:44–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3259096

  110. Savoia G, Esposito C, Belfiore F, Amantea B, Cuocolo R. Propofol infusion and auditory evoked potentials. Anaesthesia [Internet]. 1988 Mar [cited 2017 Mar 7];43 Suppl:46–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3259097

  111. Vuyk J, Engbers FH, Lemmens HJ, Burm AG, Vletter AA, Gladines MP, et al. Pharmacodynamics of propofol in female patients. Anesthesiology [Internet]. 1992 Jul [cited 2017 Mar 7];77(1):3–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1610007

  112. Forrest FC, Tooley MA, Saunders PR, Prys-Roberts C. Propofol infusion and the suppression of consciousness: the EEG and dose requirements. Br J Anaesth [Internet]. 1994 Jan [cited 2017 Mar 7];72(1):35–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8110547

  113. Spelina KR, Coates DP, Monk CR, Prys-Roberts C, Norley I, Turtle MJ. Dose requirements of propofol by infusion during nitrous oxide anaesthesia in man. I: Patients premedicated with morphine sulphate. Br J Anaesth [Internet]. 1986 Oct [cited 2017 Mar 7];58(10):1080–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3490270

  114. Taylor MB, Grounds RM, Mulrooney PD, Morgan M. Ventilatory effects of propofol during induction of anaesthesia. Comparison with thiopentone. Anaesthesia [Internet]. 1986 Aug [cited 2017 Mar 7];41(8):816–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3489422

  115. Goodman NW, Black AM, Carter JA. Some ventilatory effects of propofol as sole anaesthetic agent. Br J Anaesth [Internet]. 1987 Dec [cited 2017 Mar 7];59(12):1497–503. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3122806

  116. Jonsson MM, Lindahl SGE, Eriksson LI. Effect of propofol on carotid body chemosensitivity and cholinergic chemotransduction. Anesthesiology [Internet]. 2005 Jan [cited 2017 Mar 7];102(1):110–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15618794

  117. Conti G, Dell’Utri D, Vilardi V, De Blasi RA, Pelaia P, Antonelli M, et al. Propofol induces bronchodilation in mechanically ventilated chronic obstructive pulmonary disease (COPD) patients. Acta Anaesthesiol Scand [Internet]. 1993 Jan [cited 2017 Mar 7];37(1):105–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8424280

  118. Brown RH, Wagner EM. Mechanisms of bronchoprotection by anesthetic induction agents: propofol versus ketamine. Anesthesiology [Internet]. 1999 Mar [cited 2017 Mar 7];90(3):822–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10078684

  119. Larsen R, Rathgeber J, Bagdahn A, Lange H, Rieke H. Effects of propofol on cardiovascular dynamics and coronary blood flow in geriatric patients. A comparison with etomidate. Anaesthesia [Internet]. 1988 Mar [cited 2017 Mar 7];43 Suppl:25–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3259092

  120. Coates DP, Prys-Roberts C, Spelina KR, Monk CR, Norley I. Propofol (‘Diprivan’) by intravenous infusion with nitrous oxide: dose requirements and haemodynamic effects. Postgrad Med J [Internet]. 1985 [cited 2017 Mar 7];61 Suppl 3:76–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3877300

  121. Van Aken H, Meinshausen E, Prien T, Brüssel T, Heinećke A, Lawin P. The influence of fentanyl and tracheal intubation on the hemodynamic effects of anesthesia induction with propofol/N2O in humans. Anesthesiology [Internet]. 1988 Jan [cited 2017 Mar 7];68(1):157–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3257362

  122. Wahr JA, Plunkett JJ, Ramsay JG, Reeves J, Jain U, Ley C, et al. Cardiovascular responses during sedation after coronary revascularization. Incidence of myocardial ischemia and hemodynamic episodes with propofol versus midazolam. Institutions of the McSPI Research Group. Anesthesiology [Internet]. 1996 Jun [cited 2017 Mar 7];84(6):1350–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8669676

  123. Pagel PS, Warltier DC. Negative inotropic effects of propofol as evaluated by the regional preload recruitable stroke work relationship in chronically instrumented dogs. Anesthesiology [Internet]. 1993 Jan [cited 2017 Mar 7];78(1):100–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8424542

  124. Chang KS, Davis RF. Propofol produces endothelium-independent vasodilation and may act as a Ca2+ channel blocker. Anesth Analg [Internet]. 1993 Jan [cited 2017 Mar 7];76(1):24–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8418736

  125. Yamashita A, Kajikuri J, Ohashi M, Kanmura Y, Itoh T. Inhibitory effects of propofol on acetylcholine-induced, endothelium-dependent relaxation and prostacyclin synthesis in rabbit mesenteric resistance arteries. Anesthesiology [Internet]. 1999 Oct [cited 2017 Mar 7];91(4):1080–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10519512

  126. Samain E, Bouillier H, Marty J, Safar M, Dagher G. The effect of propofol on angiotensin II-induced Ca(2+) mobilization in aortic smooth muscle cells from normotensive and hypertensive rats. Anesth Analg [Internet]. 2000 Mar [cited 2017 Mar 7];90(3):546–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10702434

  127. Ebert TJ, Muzi M, Berens R, Goff D, Kampine JP. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology [Internet]. 1992 May [cited 2017 Mar 7];76(5):725–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1575340

  128. Reich DL, Hossain S, Krol M, Baez B, Patel P, Bernstein A, et al. Predictors of hypotension after induction of general anesthesia. Anesth Analg [Internet]. 2005 Sep [cited 2017 Mar 7];101(3):622–8, table of contents. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000539-200509000-00002

  129. Stephan H, Sonntag H, Schenk HD, Kettler D, Khambatta HJ. Effects of propofol on cardiovascular dynamics, myocardial blood flow and myocardial metabolism in patients with coronary artery disease. Br J Anaesth [Internet]. 1986 Sep [cited 2017 Mar 7];58(9):969–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3489478

  130. Vermeyen KM, Erpels FA, Janssen LA, Beeckman CP, Hanegreefs GH. Propofol-fentanyl anaesthesia for coronary bypass surgery in patients with good left ventricular function. Br J Anaesth [Internet]. 1987 Sep [cited 2017 Mar 7];59(9):1115–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3499162

  131. Patrick MR, Blair IJ, Feneck RO, Sebel PS. A comparison of the haemodynamic effects of propofol (‘Diprivan’) and thiopentone in patients with coronary artery disease. Postgrad Med J [Internet]. 1985 [cited 2017 Mar 7];61 Suppl 3:23–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3877290

  132. Borgeat A, Wilder-Smith OH, Saiah M, Rifat K. Subhypnotic doses of propofol relieve pruritus induced by epidural and intrathecal morphine. Anesthesiology [Internet]. 1992 Apr [cited 2017 Mar 7];76(4):510–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1550275

  133. Gan TJ, Ginsberg B, Grant AP, Glass PS. Double-blind, randomized comparison of ondansetron and intraoperative propofol to prevent postoperative nausea and vomiting. Anesthesiology [Internet]. 1996 Nov [cited 2017 Mar 7];85(5):1036–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8916820

  134. Saiah M, Borgeat A, Wilder-Smith OH, Rifat K, Suter PM. Epidural-morphine-induced pruritus: propofol versus naloxone. Anesth Analg [Internet]. 1994 Jun [cited 2017 Mar 7];78(6):1110–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8198266

  135. Dönmez A, Arslan G, Pirat A, Demirhan B. Is pancreatitis a complication of propofol infusion? Eur J Anaesthesiol [Internet]. 1999 Jun [cited 2017 Mar 7];16(6):367–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10434163

  136. Devlin JW, Lau AK, Tanios MA. Propofol-associated hypertriglyceridemia and pancreatitis in the intensive care unit: an analysis of frequency and risk factors. Pharmacotherapy [Internet]. 2005 Oct [cited 2017 Mar 7];25(10):1348–52. Available from: http://doi.wiley.com/10.1592/phco.2005.25.10.1348

  137. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth [Internet]. 1998 [cited 2017 Mar 7];8(6):491–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9836214

  138. Mehta N, DeMunter C, Habibi P, Nadel S, Britto J. Short-term propofol infusions in children. Lancet (London, England) [Internet]. 1999 Sep 4 [cited 2017 Mar 7];354(9181):866–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673605759365

  139. Branca D, Roberti MS, Vincenti E, Scutari G. Uncoupling effect of the general anesthetic 2,6-diisopropylphenol in isolated rat liver mitochondria. Arch Biochem Biophys [Internet]. 1991 Nov 1 [cited 2017 Mar 7];290(2):517–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1656882

  140. Schenkman KA, Yan S. Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med [Internet]. 2000 Jan [cited 2017 Mar 7];28(1):172–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10667518

  141. Fudickar A, Bein B. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol [Internet]. 2009 May [cited 2017 Mar 7];75(5):339–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19412155

  142. Motsch J, Roggenbach J. Propofol infusion syndrome. Anaesthesist [Internet]. 2004 Oct [cited 2017 Mar 7];53(10):1009–22–4. Available from: http://link.springer.com/10.1007/s00101-004-0756-3

  143. Short TG, Young Y. Toxicity of intravenous anaesthetics. Best Pract Res Clin Anaesthesiol [Internet]. 2003 Mar [cited 2017 Mar 7];17(1):77–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12751550

  144. Wolf AR, Potter F. Propofol infusion in children: when does an anesthetic tool become an intensive care liability? Paediatr Anaesth [Internet]. 2004 Jun [cited 2017 Mar 7];14(6):435–8. Available from: http://doi.wiley.com/10.1111/j.1460-9592.2004.01332.x

  145. Vasile B, Rasulo F, Candiani A, Latronico N. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med [Internet]. 2003 Sep 1 [cited 2017 Mar 7];29(9):1417–25. Available from: http://link.springer.com/10.1007/s00134-003-1905-x

  146. Devlin JW, Roberts RJ. Pharmacology of commonly used analgesics and sedatives in the ICU: benzodiazepines, propofol, and opioids. Anesthesiol Clin [Internet]. 2011 Dec [cited 2017 Mar 7];29(4):567–85. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1932227511000760

  147. Amrein R, Hetzel W, Hartmann D, Lorscheid T. Clinical pharmacology of flumazenil. Eur J Anaesthesiol Suppl [Internet]. 1988 [cited 2017 Mar 7];2:65–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2842143

  148. Ghoneim MM, Mewaldt SP. Benzodiazepines and human memory: a review. Anesthesiology [Internet]. 1990 May [cited 2017 Mar 7];72(5):926–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1971164

  149. Pandharipande P, Shintani A, Peterson J, Pun BT, Wilkinson GR, Dittus RS, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology [Internet]. 2006 Jan [cited 2017 Mar 7];104(1):21–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16394685

  150. Devlin JW, Fong JJ, Fraser GL, Riker RR. Delirium assessment in the critically ill. Intensive Care Med [Internet]. 2007 Jun 24 [cited 2017 Mar 7];33(6):929–40. Available from: http://link.springer.com/10.1007/s00134-007-0603-5

  151. Skaar D, Weinert C. Sedatives and hypnotics. In: Vincent J, Abraham E, Moore F, editors. The textbook of critical care. 6th ed. Philadelphia; 2011. p. 1366–1373.

    Google Scholar 

  152. Young CC, Prielipp RC. Benzodiazepines in the intensive care unit. Crit Care Clin [Internet]. 2001 Oct [cited 2017 Mar 11];17(4):843–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11762264.

  153. Laine GA, Hossain SM, Solis RT, Adams SC. Polyethylene glycol nephrotoxicity secondary to prolonged high-dose intravenous lorazepam. Ann Pharmacother [Internet]. 1995 Nov [cited 2017 Mar 11];29(11):1110–4. Available from: http://journals.sagepub.com/doi/10.1177/106002809502901107

  154. Cawley MJ. Short-term lorazepam infusion and concern for propylene glycol toxicity: case report and review. Pharmacotherapy [Internet]. 2001 Sep [cited 2017 Mar 11];21(9):1140–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11560204

  155. Seay RE, Graves PJ, Wilkin MK. Comment: Possible toxicity from propylene glycol in lorazepam infusion. Ann Pharmacother [Internet]. 1997 May [cited 2017 Mar 11];31(5):647–8. Available from: http://journals.sagepub.com/doi/10.1177/106002809703100525

  156. Barnes BJ, Gerst C, Smith JR, Terrell AR, Mullins ME. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy [Internet]. 2006 Jan [cited 2017 Mar 11];26(1):23–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16422667

  157. Parker MG, Fraser GL, Watson DM, Riker RR. Removal of propylene glycol and correction of increased osmolar gap by hemodialysis in a patient on high dose lorazepam infusion therapy. Intensive Care Med [Internet]. 2002 Jan 13 [cited 2017 Mar 11];28(1):81–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11819005

  158. Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol [Internet]. 2001 Oct [cited 2017 Mar 11];52(4):349–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11678778

  159. Desai HD, Seabolt J, Jann MW. Smoking in patients receiving psychotropic medications: a pharmacokinetic perspective. CNS Drugs [Internet]. 2001 [cited 2017 Mar 11];15(6):469–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11524025

  160. Jeevaratnam DR, Menon DK. Survey of intensive care of severely head injured patients in the United Kingdom. BMJ [Internet]. 1996 Apr 13 [cited 2017 Mar 28];312(7036):944–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8616307

  161. Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Roberts I, editor. Cochrane database Syst Rev [Internet]. 2012 Dec 12 [cited 2017 Mar 28];12:CD000033. Available from: http://doi.wiley.com/10.1002/14651858.CD000033.pub2

  162. Paul BS, Paul G. Sedation in neurological intensive care unit. Ann Indian Acad Neurol [Internet]. 2013 Apr [cited 2017 Mar 28];16(2):194–202. Available from: http://www.annalsofian.org/text.asp?2013/16/2/194/112465

  163. Stept WJ, Safar P. Rapid induction-intubation for prevention of gastric-content aspiration. Anesth Analg [Internet]. [cited 2017 Mar 28];49(4):633–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5534675

  164. Flower O, Hellings S. Sedation in traumatic brain injury. Emerg Med Int [Internet]. 2012 [cited 2017 Mar 28];2012:637171. Available from: http://www.hindawi.com/journals/emi/2012/637171/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Barbani M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Barbani, F., Angeli, E., De Gaudio, A.R. (2018). Intravenous Sedatives and Analgesics. In: De Gaudio, A., Romagnoli, S. (eds) Critical Care Sedation. Springer, Cham. https://doi.org/10.1007/978-3-319-59312-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59312-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59311-1

  • Online ISBN: 978-3-319-59312-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics