Skip to main content

Boundary Element Method for Time-Harmonic Acoustic Problems

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 579))

Abstract

This chapter presents an introduction to the solution of time-harmonic acoustic problems by a boundary element method (BEM). Specifically, the Helmholtz equation with admittance boundary conditions is solved in 3d. The chapter starts with a derivation of the Kirchhoff–Helmholtz integral equation from a residual formulation of the Helmholtz equation. The discretization process with introduction of basis and test functions is described and shown for the collocation and the Galerkin method. Thereafter, only collocation is used. The next section describes the application of field sources and incident wave fields on behalf of a particular solution. This is followed by a discussion on field point evaluation and a detailed description on the evaluation of the system matrix entries. The latter starts with the integral free terms, continues with an adaptive integration strategy for regular and quasi-singular integrals and finishes with an integration strategy for singular integrals. Subsequent sections discuss the choice of boundary elements and the methods to deal with the well-known non-uniqueness problem in BEM. While it has become obvious for the former problem that discontinuous Lagrangian elements perform the best, in the latter case the author is convinced that the Burton and Miller method is the only safe and efficient choice to avoid irregular frequencies. The next subsection explains the motivation for and the basic idea of fast boundary element techniques and it concludes with a discussion about the cases when these fast techniques are actually reasonable. A section on structure fluid interaction is not just describing the so-called mortar formulation but also shows that a (non-local) boundary admittance may contain the complete information about the interaction between fluid and structure. The final two subsections deal with symmetric and periodic problems on the one side and with panel contribution analysis on the other side. Throughout this chapter, numerous different examples are presented. In some cases, the author chose simple one-dimensional examples which may be solved analytically. Other examples are rather industrial applications such as sedan cabin compartments, diesel engine radiation, a tire noise problem and the computation of common room acoustic measures for a music recording studio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adey, R. A., Niku, S. M., Baynham, J., & Burns, P. (1995). Predicting acoustic contributions and sensitivity. Application to vehicle structures. In C. A. Brebbia (Ed.), Computational acoustics and its environmental applications (pp. 181–188). Southampton: Computational Mechanics Publications.

    Google Scholar 

  • Atkinson, K. E. (1997). The numerical solution of integral equations of the second kind (1st ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Baumgart, J., Marburg, S., & Schneider, S. (2007). Efficient sound power computation of open structures with infinite/finite elements and by means of the Padé-via-Lanczos algorithm. Journal of Computational Acoustics, 15, 557–577.

    Article  MathSciNet  MATH  Google Scholar 

  • Bebendorf, M. (2008). Hierarchical matrices: A means to efficiently solve elliptic boundary value problems. Berlin: Springer.

    MATH  Google Scholar 

  • Bebendorf, M., Kuske, C., & Venn, R. (2015). Wideband nested cross approximation for Helmholtz problems. Numerische Mathematik, 130, 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernardi, C., Maday, Y., & Patera, A. T. (1994). A new nonconforming approach to domain decomposition: The mortar element method. In H. Brezis and J.-L. Lions(Eds.), Nonlinear partial differential equations and their applications (Vol. 11, pp. 13–51). Pitman, New York: College de France Seminar.

    Google Scholar 

  • Bespalov, A. (2000). On the usage of a regular grid for implementation of boundary integral methods for wave problems. Russian Journal of Numerical Analysis and Mathematical Modelling, 15, 469–488.

    Article  MathSciNet  MATH  Google Scholar 

  • Bork, I. (2000). A comparison of room simulation software - the 2nd round robin on room acoustical computer simulation. Acta Acustica united with Acustica, 86, 943–956.

    Google Scholar 

  • Bork, I. (2005a). Report on the 3rd round robin on room acoustical computer simulation - Part I: Measurements. Acta Acustica united with Acustica, 91, 740–752.

    Google Scholar 

  • Bork, I. (2005b). Report on the 3rd round robin on room acoustical computer simulation - Part II: Calculations. Acta Acustica united with Acustica, 91, 753–763.

    Google Scholar 

  • Brakhage, H., & Werner, P. (1965). Über das Dirichlet’sche Außenraumproblem für die Helmholtz’sche Schwingungsgleichung. Archiv der Mathematik, 16, 325–329.

    Article  MATH  Google Scholar 

  • Brancati, A., Aliabadi, M., & Milazzo, A. (2011). An improved hierarchical ACA technique for sound absorbent materials. Computer Modeling in Engineering and Sciences, 78, 1–24.

    MathSciNet  MATH  Google Scholar 

  • Brebbia, C. A., Telles, J. F. C., & Wrobel, L. C. (1984). Boundary element techniques. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Brunner, D., Junge, M., Rapp, P., Bebendorf, M., & Gaul, L. (2010). Comparison of the fast multipole method with hierarchical matrices for the Helmholtz-BEM. Computer Modeling in Engineering and Sciences, 58, 131–160.

    MathSciNet  MATH  Google Scholar 

  • Burton, A. J., & Miller, G. F. (1971). The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proceedings of the Royal Society of London, 323, 201–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, P. T., & Ginsberg, J. H. (1995). Complex power, reciprocity, and radiation modes for submerged bodies. Journal of the Acoustical Society of America, 98, 3343–3351.

    Article  Google Scholar 

  • Chen, Z. S., Hofstetter, G., & Mang, H. A. (1993). A 3D boundary element method for determination of acoustic eigenfrequencies considering admittance boundary conditions. Journal of Computational Acoustics, 1, 455–468.

    Article  MATH  Google Scholar 

  • Chen, Z. S., Hofstetter, G., & Mang, H. A. (1997). A symmetric Galerkin formulation of the boundary element method for acoustic radiation and scattering. Journal of Computational Acoustics, 5, 219–241.

    Article  MATH  Google Scholar 

  • Chen, Z. S., Hofstetter, G., & Mang, H. A. (1998). A Galerkin-type BE-FE formulation for elasto-acoustic coupling. Computer Methods in Applied Mechanics and Engineering, 152, 147–155.

    Article  MATH  Google Scholar 

  • Chen, Z. S., Hofstetter, G., & Mang, H. (2008). A Galerkin-type be-formulation for acoustic radiation and scattering of structures with arbitrary shape. In S. Marburg & B. Nolte (Eds.), Computational acoustics of noise propagation in fluids. Finite and boundary element methods (pp. 435–458). Berlin: Springer.

    Google Scholar 

  • Chen, S., Liu, Y., & Dou, X. (2000). A unified boundary element method for the analysis of sound and shell-like structure interactions. II. Efficient solution techniques. Journal of the Acoustical Society of America, 108, 2738–2745.

    Article  Google Scholar 

  • Chen, L., Chen, H., Zheng, C., & Marburg, S. (2016). Structural-acoustic sensitivity analysis of radiated sound power using a finite element/ discontinuous fast multipole boundary element scheme. International Journal for Numerical Methods in Fluids, 82, 858–878.

    Article  MathSciNet  Google Scholar 

  • Chen, L., Marburg, S., Chen, H., Zhang, H., & Gao, H. (2017). An adjoint operator approach for sensitivity analysis of radiated sound power in fully coupled structural-acoustic systems. Journal of Computational Acoustics, 25, 1750003 (24 p.).

    Google Scholar 

  • Ciskowski, R. D., & Brebbia, C. A. (Eds.). (1991). Boundary elements in acoustics. Southampton, Boston: Computational Mechanics Publications and Elsevier Applied Science.

    Google Scholar 

  • Coyette, J.-P., Wynendaele, H., & Chargin, M. K. (1993). A global acoustic sensitivity tool for improving structural design. Proceedings- SPIE The International Society for Optical Engineering, 1923, 1389–1394.

    Google Scholar 

  • Coyette, J.-P., Lecomte, C., Migeot, J.-L., Blanche, J., Rochette, M., & Mirkovic, G. (1999). Calculation of vibro-acoustic frequency response functions using a single frequency boundary element solution and a Padé expansion. Acustica, 85, 371–377.

    Google Scholar 

  • Cremers, L., Guisset, P., Meulewaeter, L., & Tournour, M. (2000). A computer–aided engineering method for predicting the acoustic signature of vibrating structures using discrete models. Great Britain Patent No. GB 2000–16259.

    Google Scholar 

  • Croaker, P., Kessissoglou, N., & Marburg, S. (2015). Strongly singular and hypersingular volume integrals for near-field aeroacoustics. International Journal for Numerical Methods in Fluids, 77, 274–318.

    Article  MathSciNet  Google Scholar 

  • Croaker, P., Kessissoglou, N. J., & Marburg, S. (2016). Aeroacoustic scattering using a particle accelerated computational fluid dynamics/boundary element technique. AIAA Journal, 54, 2116–2133.

    Article  Google Scholar 

  • Croaker, P., Marburg, S., Kinns, R., & Kessissoglou, N. J. (2013). A fast low-storage method for evaluating Lighthill’s volume quadrupoles. AIAA Journal, 51, 867–884.

    Article  Google Scholar 

  • do Rego Silva, J. J. (1993). Acoustic and elastic wave scattering using boundary elements Topics in engineering (Vol. 18). Southampton, Boston: Computational Mechanics Publications.

    Google Scholar 

  • Dong, J., Choi, K. K., & Kim, N.-H. (2004). Design optimization of structural-acoustic problems using FEA-BEA with adjoint variable method. ASME Journal of Mechanical Design, 126, 527–533.

    Article  Google Scholar 

  • Fard, S. M. B., Peters, H., Kessissoglou, N., & Marburg, S. (2015). Three dimensional analysis of a noise barrier using a quasi-periodic boundary element method. Journal of the Acoustical Society of America, 137, 3107–3114.

    Article  Google Scholar 

  • Fard, S. M. B., Peters, H., Marburg, S., & Kessissoglou, N. (2017). Acoustic performance of a barrier embedded with Helmholtz resonators using a quasi-periodic boundary element technique. Acta Acustica united with Acustica, 103, 444–450.

    Google Scholar 

  • Fernandez-Grande, E., Jacobsen, F., & Leclére, Q. (2012). Direct formulation of the supersonic acoustic intensity in space domain. Journal of the Acoustical Society of America, 131, 186–193.

    Article  Google Scholar 

  • Flemisch, B., Kaltenbacher, M., & Wohlmuth, B. I. (2006). Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids. International Journal for Numerical Methods in Engineering, 67, 1791–1810.

    Article  MathSciNet  MATH  Google Scholar 

  • Fritze, D., Marburg, S., & Hardtke, H.-J. (2005). FEM-BEM-coupling and structural-acoustic sensitivity analysis for shell geometries. Computers and Structures, 83, 143–154.

    Article  Google Scholar 

  • Fritze, D., Marburg, S., & Hardtke, H.-J. (2009). Estimation of radiated sound power: A case study on common approximation methods. Acta Acustica united with Acustica, 95, 833–842.

    Article  Google Scholar 

  • Fuß, S., Hawkins, S. C., & Marburg, S. (2011). An eigenvalue search algorithm for modal analysis of a resonator in free space. Journal of Computational Acoustics, 19, 95–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Galkowski, J., Müller, E. H., & Spence, E. A. (2016). Wavenumber–explicit analysis for the Helmholtz h–BEM: error estimates and iteration counts for the Dirichlet problem. Preprint in numerical analysis, Cornell University. https://arxiv.org/abs/1608.01035.

  • Gaul, L., Brunner, D., & Junge, M. (2008). Coupling a fast boundary element method with a finite element formulation for fluid-structure interaction. In S. Marburg & B. Nolte (Eds.), Computational acoustics of noise propagation in fluids. Finite and boundary element methods (pp. 519–546). Berlin: Springer.

    Google Scholar 

  • Giebermann, K. (2001). Multilevel representations of boundary integral operators. Computing, 67, 183–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Gumerov, N. A., & Duraiswami, R. (2004). Fast multipole methods for the Helmholtz equation in three dimensions. Oxford: Elsevier Science & Technology.

    MATH  Google Scholar 

  • Gumerov, N. A., & Duraiswami, R. (2009). A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation. Journal of the Acoustical Society of America, 125, 191–205.

    Article  Google Scholar 

  • Harari, I., & Hughes, T. J. R. (1992). A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics. Computer Methods in Applied Mechanics and Engineering, 97, 77–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Hornikx, M., Kaltenbacher, M., & Marburg, S. (2015). A platform for benchmark cases in computational acoustics. Acta Acustica united with Acustica, 101, 811–820.

    Article  Google Scholar 

  • Ihlenburg, F. (1998). Finite element analysis of acoustic scattering (Vol. 132). Applied mathematical sciences. Berlin: Springer.

    Google Scholar 

  • Ishiyama, S.-I., Imai, M., Maruyama, S.-I., Ido, H., Sugiura, N., & Suzuki, S. (1988). The application of ACOUST/BOOM - a noise level prediction and reduction code. SAE-Paper, 880910, 195–205.

    Google Scholar 

  • Jean, P., & Defrance, J. (2015). Sound propagation in rows of cylinders of infinite extent: Application to sonic crystals and thickets along roads. Acta Acustica united with Acustica, 101, 474–483.

    Article  Google Scholar 

  • Karimi, M., Croaker, P., & Kessissoglou, N. (2016). Boundary element solution for periodic acoustic problems. Journal of Sound and Vibration, 360, 129–139.

    Article  Google Scholar 

  • Karimi, M., Croaker, P., & Kessissoglou, N. (2017). Acoustic scattering for 3D multi-directional periodic structures using the boundary element method. Journal of the Acoustical Society of America, 141, 313–323.

    Article  Google Scholar 

  • Kirkup, S. M. (1998). The boundary element method in acoustics. Heptonstall: Integrated Sound Software.

    MATH  Google Scholar 

  • Koopmann, G. H., & Fahnline, J. B. (1997). Designing quiet structures: A sound power minimization approach. San Diego: Academic Press.

    Google Scholar 

  • Kupradze, V. D. (1956). Randwertaufgaben der Schwingungstheorie und Integralgleichungen. Berlin: Deutscher Verlag der Wissenschaften. (1. Russian edition 1950).

    Google Scholar 

  • Kussmaul, R. (1969). Ein numerisches Verfahren zur Lösung des Neumannschen Außenraumproblems für die Helmholtzsche Schwingungsgleichung. Computing, 4, 246–273.

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, Y. W. (1999). A boundary integral formulation for the prediction of acoustic scattering from periodic structures. Journal of the Acoustical Society of America, 105, 762–769.

    Article  Google Scholar 

  • Liu, Y. (2009). Fast multipole boundary element method. Theory and applications in engineering. New York: Cambridge University Press.

    Book  Google Scholar 

  • Liu, X., Wu, H., & Jiang, W. (2017). Hybrid approximation hierarchical boundary element methods for acoustic problem. Journal of Computational Acoustics (in print).

    Google Scholar 

  • Liu, D., Peters, H., Marburg, S., & Kessissoglou, N. J. (2016a). Supersonic intensity and non-negative intensity for prediction of radiated sound. Journal of the Acoustical Society of America, 139, 2797–2806.

    Article  Google Scholar 

  • Liu, D., Peters, H., Marburg, S., & Kessissoglou, N. J. (2016b). Surface contributions to scattered sound power using non-negative intensity. Journal of the Acoustical Society of America, 140, 1206–1217.

    Article  Google Scholar 

  • Magalhaes, M. B. S., & Tenenbaum, R. A. (2006). Supersonic acoustic intensity for arbitrarily shaped sources. Acta Acustica united with Acustica, 92, 189–201.

    Google Scholar 

  • Marburg, S. (2002a). Developments in structural–acoustic optimization for passive noise control. Archives of Computational Methods in Engineering. State of the Art Reviews, 9, 291–370.

    Google Scholar 

  • Marburg, S. (2002b). Six boundary elements per wavelength. Is that enough? Journal of Computational Acoustics, 10, 25–51.

    Google Scholar 

  • Marburg, S. (2005). Normal modes in external acoustics. Part I. Investigation of the one-dimensional duct problem. Acta Acustica united with Acustica, 91, 1063–1078.

    Google Scholar 

  • Marburg, S. (2006). Normal modes in external acoustics. Part III: Sound power evaluation based on frequency-independent superposition of modes. Acta Acustica united with Acustica, 92, 296–311.

    Google Scholar 

  • Marburg, S. (2008). Discretization requirements: How many elements per wavelength are necessary? In S. Marburg & B. Nolte (Eds.), Computational acoustics of noise propagation in fluids. Finite and boundary element methods (pp. 309–332). Berlin: Springer.

    Google Scholar 

  • Marburg, S. (2016a). The Burton and Miller method: Unlocking another mystery of its coupling parameter. Journal of Computational Acoustics, 24, 1550016 (20 p.).

    Google Scholar 

  • Marburg, S. (2016b). Numerical damping in the acoustic boundary element method. Acta Acustica united with Acustica, 102, 415–418.

    Article  Google Scholar 

  • Marburg, S., & Amini, S. (2005). Cat’s eye radiation with boundary elements: Comparative study on treatment of irregular frequencies. Journal of Computational Acoustics, 13, 21–45.

    Article  MATH  Google Scholar 

  • Marburg, S., & Anderssohn, R. (2011). Fluid structure interaction and admittance boundary conditions: Setup of an analytical example. Journal of Computational Acoustics, 19, 63–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Marburg, S., & Hardtke, H.-J. (1999). A study on the acoustic boundary admittance. Determination, results and consequences. Engineering Analysis with Boundary Elements, 23, 737–744.

    Article  MATH  Google Scholar 

  • Marburg, S., & Hardtke, H.-J. (2003). Investigation and optimization of a spare wheel well to reduce vehicle interior noise. Journal of Computational Acoustics, 11, 425–449.

    Article  MATH  Google Scholar 

  • Marburg, S., & Nolte, B. (Eds.). (2008a). Computational acoustics of noise propagation in fluids. Finite and boundary element methods. Berlin: Springer.

    Google Scholar 

  • Marburg, S., & Nolte, B. (2008b). A unified approach to finite and boundary element discretization in linear time–harmonic acoustics. In S. Marburg & B. Nolte (Eds.), Computational acoustics of noise propagation in fluids. Finite and boundary element methods (pp. 1–34). Berlin: Springer.

    Google Scholar 

  • Marburg, S., & Schneider, S. (2003a). Performance of iterative solvers for acoustic problems. Part I. Solvers and effect of diagonal preconditioning. Engineering Analysis with Boundary Elements, 27, 727–750.

    Article  MATH  Google Scholar 

  • Marburg, S., & Schneider, S. (2003b). Influence of element types on numeric error for acoustic boundary elements. Journal of Computational Acoustics, 11, 363–386.

    Google Scholar 

  • Marburg, S., & Wu, T. W. (2008). Treating the phenomenon of irregular frequencies. In S. Marburg & B. Nolte (Eds.), Computational acoustics of noise propagation in fluids. Finite and boundary element methods (pp. 411–434). Berlin: Springer.

    Google Scholar 

  • Marburg, S., Shepherd, M., & Hambric, S. A. (2016). Structural acoustic optimization. In S. A. Hambric, S. H. Sung, & D. J. Nefske (Eds.), Engineering vibroacoustic analysis: methods and applications (pp. 268–304). Chichester: Wiley.

    Google Scholar 

  • Marburg, S., Hardtke, H.-J., Schmidt, R., & Pawandenat, D. (1997). An application of the concept of acoustic influence coefficients for the optimization of a vehicle roof. Engineering Analysis with Boundary Elements, 20, 305–310.

    Article  Google Scholar 

  • Marburg, S., Rennert, R., Schneider, S., & Hardtke, H.-J. (2002). Resonances in external acoustics? An example of tire noise excitation. In A. Calvo-Manzano, A. Perez-Lopez, & J. S. Santiago (Eds.), Proceedings of Forum Acusticum, Special Issue of Revista de Acustica (Vol. 33, pp. 3–4). Sevilla, (CD).

    Google Scholar 

  • Marburg, S., Schneider, S., Vorländer, M., & Romanenko, G. (2003). Boundary elements for room acoustic measures. In Proceedings of the INTERNOISE 2003, The 32nd International Congress and Exposition on Noise Control Engineering, Held in Seogwipo/Korea (pp. 3598–3604). Seoul: Covan International Corp.

    Google Scholar 

  • Marburg, S., Dienerowitz, F., Horst, T., & Schneider, S. (2006). Normal modes in external acoustics. Part II: Eigenvalues and eigenvectors in 2D. Acta Acustica united with Acustica, 92, 97–111.

    Google Scholar 

  • Marburg, S., Lösche, E., Peters, H., & Kessissoglou, N. J. (2013). Surface contributions to radiated sound power. Journal of the Acoustical Society of America, 133, 3700–3705.

    Article  Google Scholar 

  • Messner, M., Schanz, M., & Darve, E. (2012). Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation. Journal of Computational Physics, 231, 1175–1196.

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, W. L., Bell, W. A., Zinn, B. T., & Stallybrass, M. P. (1978). Boundary integral solutions of three dimensional acoustic radiation problems. Journal of Sound and Vibration, 59, 245–262.

    Article  MATH  Google Scholar 

  • Moheit, L., & Marburg, S. (2017). Infinite elements and their influence on normal and radiation modes in exterior acoustics. Journal of Computational Acoustics, 25, 1650020 (20 p.).

    Google Scholar 

  • Ochmann, M. (2013). Exact solutions for sound radiation from a moving monopole above an impedance plane. Journal of the Acoustical Society of America, 133, 1911–1921.

    Article  Google Scholar 

  • Ochmann, M., & Brick, H. (2008). Acoustical radiation and scattering above an impedance plane. In S. Marburg & B. Nolte (Eds.), Computational acoustics of noise propagation in fluids. Finite and boundary element methods (pp. 459–494). Berlin: Springer.

    Google Scholar 

  • Panič, O. I. (1965). K voprosu o razrešimosti vnešnich kraevich zadač dlja volnovogo uravnenija i dlja sistemi uravnenij Maxwella. Uspechi Mathematiceskich Nauk, 20, 221–226.

    Google Scholar 

  • Peters, H., Kessissoglou, N. J., & Marburg, S. (2012a). Enforcing reciprocity in numerical analysis of acoustic radiation modes and sound power evaluation. Journal of Computational Acoustics, 20, 1250005 (19 p.).

    Google Scholar 

  • Peters, H., Marburg, S., & Kessissoglou, N. J. (2012b). Structural-acoustic coupling on non-conforming meshes with quadratic shape functions. International Journal for Numerical Methods in Engineering, 91, 27–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Peters, H., Kessissoglou, N. J., Lösche, E., & Marburg, S. (2013a). Prediction of radiated sound power from vibrating structures using the surface contribution method. In T. McMinn (Ed.), Proceedings of Acoustics 2013 Victor Harbor: Science, Technology and Amenity. Proceedings of the Annual Conference of the Australian Acoustical Society. (CD).

    Google Scholar 

  • Peters, H., Kessissoglou, N. J., & Marburg, S. (2013b). Modal decomposition of exterior acoustic-structure interaction. Journal of the Acoustical Society of America, 133, 2668–2677.

    Article  Google Scholar 

  • Peters, H., Kessissoglou, N., & Marburg, S. (2014). Modal decomposition of exterior acoustic-structure interaction problems with model order reduction. Journal of the Acoustical Society of America, 135, 2706–2717.

    Article  Google Scholar 

  • Roozen-Kroon, P. J. M. (1992). Structural optimization of bells. Dissertation, Technische Universiteit Eindhoven.

    Google Scholar 

  • Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 7, 856–869.

    Article  MATH  Google Scholar 

  • Sakuma, T., Schneider, S., & Yasuda, Y. (2008). Fast solution methods. In S. Marburg & B. Nolte, (Eds.), Computational acoustics of noise propagation in fluids. Finite and boundary element methods (pp. 333–368). Berlin: Springer.

    Google Scholar 

  • Schenck, H. A. (1968). Improved integral formulation for acoustic radiation problems. Journal of the Acoustical Society of America, 44, 41–58.

    Article  Google Scholar 

  • Schneider, S. (2003). Application of fast methods for acoustic scattering and radiation problems. Journal of Computational Acoustics, 11, 387–401.

    Article  Google Scholar 

  • Schneider, S. & Marburg, S. (2003). Performance of iterative solvers for acoustic problems. Part ii. Acceleration by ILU-type preconditioner. Engineering Analysis with Boundary Elements, 27, 751–757.

    Google Scholar 

  • Telles, J. C. F. (1987). A self-adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals. International Journal for Numerical Methods in Engineering, 24, 959–973.

    Article  MATH  Google Scholar 

  • Thompson, L. L., & Pinsky, P. M. (1994). Complex wavenumber Fourier analysis of the p-version finite element method. Computational Mechanics, 13, 255–275.

    Article  MathSciNet  MATH  Google Scholar 

  • von Estorff, O. (Ed.). (2000). Boundary elements in acoustics: advances and applications. Southampton: WIT Press.

    Google Scholar 

  • Vorländer, M. (1989). Simulation of the transient and steady state sound propagation in rooms using a new combined sound particle-image source algorithm. Journal of the Acoustical Society of America, 86, 172–178.

    Article  Google Scholar 

  • Weyl, H. (1952). Kapazität von Strahlungsfeldern. Mathematische Zeitschrift, 55, 187–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilkes, D. R., & Duncan, A. J. (2015). Acoustic coupled fluid-structure interactions using a unified fast multipole boundary element method. Journal of the Acoustical Society of America, 137, 2158–2167.

    Article  Google Scholar 

  • Williams, E. G. (1995). Supersonic acoustic intensity. Journal of the Acoustical Society of America, 97, 121–127.

    Article  Google Scholar 

  • Williams, E. G. (2013). Convolution formulations for non-negative intensity. Journal of the Acoustical Society of America, 134, 1055–1066.

    Article  Google Scholar 

  • Wu, T. W. (2000a). The Helmholtz integral equation. In T. W. Wu (Ed.), Boundary element in acoustics: Fundamentals and computer codes (pp. 9–28). Southampton: WIT Press.

    Google Scholar 

  • Wu, T. W. (Ed.). (2000b). Boundary element acoustics: fundamentals and computer codes. Southampton: WIT Press.

    Google Scholar 

  • Wu, S. F., & Natarajan, L. K. (2013). Panel acoustic contribution analysis. Journal of the Acoustical Society of America, 133, 799–809.

    Article  Google Scholar 

  • Wu, T. W., & Seybert, A. F. (1991). Acoustic radiation and scattering. In R. D. Ciskowski & C. A. Brebbia (Eds.), Boundary elements in acoustics (pp. 61–76). Southampton: Computational Mechanics Publications; London: Elsevier Applied Science.

    Google Scholar 

  • Wu, H. J., Liu, Y. J., & Jiang, W. K. (2013). A low-frequency fast multipole boundary element method based on analytical integration of the hypersingular integral for 3D acoustic problems. Engineering Analysis with Boundary Elements, 37, 309–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, S. F., Moondra, M., & Beniwal, R. (2015). Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile. Journal of the Acoustical Society of America, 137, 2101–2112.

    Article  Google Scholar 

  • Zheng, C.-J., Chen, H.-B., Gao, H.-F., & Du, L. (2015). Is the Burton-Miller formulation really free of fictitious eigenfrequencies? Engineering Analysis with Boundary Elements, 59, 43–51.

    Article  MathSciNet  Google Scholar 

  • Ziegelwanger, H., Reiter, P., & Conter, M. (2017). The three-dimensional quasi-periodic boundary element method: Implementation, evaluation, and use cases. International Journal of Computational Methods and Experimental Measurements, 5, 404–414.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Marburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Marburg, S. (2018). Boundary Element Method for Time-Harmonic Acoustic Problems. In: Kaltenbacher, M. (eds) Computational Acoustics. CISM International Centre for Mechanical Sciences, vol 579. Springer, Cham. https://doi.org/10.1007/978-3-319-59038-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59038-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59037-0

  • Online ISBN: 978-3-319-59038-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics