Skip to main content

Exploiting Physiological Sensors and Biosignal Processing to Enhance Monitoring Care in Mental Health

  • Chapter
  • First Online:
Handbook of Large-Scale Distributed Computing in Smart Healthcare

Abstract

In this chapter, we describe how it is possible to exploit physiological sensors and related signal processing methods to enhance monitoring care mental health. Specifically, focusing on wearable sensors for Autonomic Nervous System (ANS) dynamics, we report on recent progresses in monitoring mood swings associated with bipolar disorder through the so-called PSYCHE system. Current clinical practice in diagnosing patients affected by this psychiatric disorder, in fact, is based only on verbal interviews and scores from specific questionnaires. Furthermore, no reliable and objective psycho-physiological markers are currently taken into account. We particularly describe a pervasive, wearable, and personalized system based on a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire electrocardiogram, respirogram, and body posture information. In order to identify a pattern of objective physiological parameters to support the diagnosis, we describe ad-hoc methodologies of advanced biosignal processing able to effectively recognize four possible clinical mood states in bipolar patients (i.e., depression, mixed state, hypomania, and euthymia) who underwent long-term (up to 24 h) monitoring. Mood assessment is here intended as an intra-subject evaluation in which the patient’s states are modeled as a stochastic process with time dependency, i.e., in the time domain, each mood state refers to the previous one(s). Experimental results are reported in terms of statistical analysis, as well as confusion matrices from automatic mood state recognition, and demonstrate that wearable and comfortable ANS monitoring could be a viable solution to enhance monitoring care in mental health. We conclude the chapter describing a methodology predicting mood changes in bipolar disorder using heartbeat nonlinear dynamics exclusively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Kessler, K. McGonagle, S. Zhao, C. Nelson, M. Hughes, S. Eshleman, et al., “Lifetime and 12-month prevalence of dsm-iii-r psychiatric disorders in the united states: results from the national comorbidity survey,” Archives of general psychiatry, vol. 51, no. 1, p. 8, 1994.

    Article  Google Scholar 

  2. H. Wittchen and F. Jacobi, “Size and burden of mental disorders in europe–a critical review and appraisal of 27 studies,” European neuropsychopharmacology, vol. 15, no. 4, pp. 357–376, 2005.

    Article  Google Scholar 

  3. S. Pini, V. de Queiroz, D. Pagnin, L. Pezawas, J. Angst, G. Cassano, et al., “Prevalence and burden of bipolar disorders in european countries,” European Neuropsychopharmacology, vol. 15, no. 4, pp. 425–434, 2005.

    Article  Google Scholar 

  4. Y. Chen and S. Dilsaver, “Lifetime rates of suicide attempts among subjects with bipolar and unipolar disorders relative to subjects with other axis i disorders,” Biological Psychiatry, vol. 39, no. 10, pp. 896–899, 1996.

    Article  Google Scholar 

  5. K. R. Merikangas, R. Jin, J.-P. He, R. C. Kessler, S. Lee, N. A. Sampson, M. C. Viana, L. H. Andrade, C. Hu, E. G. Karam, et al., “Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative,” Archives of general psychiatry, vol. 68, no. 3, p. 241, 2011.

    Article  Google Scholar 

  6. E. Vieta, M. Reinares, and A. Rosa, “Staging bipolar disorder,” Neurotoxicity research, vol. 19, no. 2, pp. 279–285, 2011.

    Article  Google Scholar 

  7. A. Andreazza, M. Kauer-Sant’Anna, B. Frey, D. Bond, F. Kapczinski, L. Young, and L. Yatham, “Oxidative stress markers in bipolar disorder: a meta-analysis,” Journal of affective disorders, vol. 111, no. 2, pp. 135–144, 2008.

    Article  Google Scholar 

  8. M. Phillips and E. Vieta, “Identifying functional neuroimaging biomarkers of bipolar disorder: toward dsm-v,” Schizophrenia bulletin, vol. 33, no. 4, pp. 893–904, 2007.

    Article  Google Scholar 

  9. A. P. Association, Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Publishing, Inc., 2000.

    Google Scholar 

  10. R. M. Carney, K. E. Freedland, and R. C. Veith, “Depression, the autonomic nervous system, and coronary heart disease,” Psychosomatic medicine, vol. 67, pp. S29–S33, 2005.

    Article  Google Scholar 

  11. J. M. Gorman and R. P. Sloan, “Heart rate variability in depressive and anxiety disorders,” American heart journal, vol. 140, no. 4, pp. S77–S83, 2000.

    Article  Google Scholar 

  12. A. Tylee and P. Gandhi, “The importance of somatic symptoms in depression in primary care,” Primary care companion to the Journal of clinical psychiatry, vol. 7, no. 4, p. 167, 2005.

    Article  Google Scholar 

  13. A. H. Kemp, D. S. Quintana, M. A. Gray, K. L. Felmingham, K. Brown, and J. M. Gatt, “Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis,” Biological psychiatry, vol. 67, no. 11, pp. 1067–1074, 2010.

    Article  Google Scholar 

  14. H. G. Stampfer, “The relationship between psychiatric illness and the circadian pattern of heart rate,” Australian and New Zealand journal of psychiatry, vol. 32, no. 2, pp. 187–198, 1998.

    Article  Google Scholar 

  15. G. Iverson, H. Stampfer, and M. Gaetz, “Reliability of circadian heart pattern analysis in psychiatry,” Psychiatric quarterly, vol. 73, no. 3, pp. 195–203, 2002.

    Article  Google Scholar 

  16. G. Iverson, M. Gaetz, E. Rzempoluck, P. McLean, W. Linden, and R. Remick, “A new potential marker for abnormal cardiac physiology in depression,” Journal of behavioral medicine, vol. 28, no. 6, pp. 507–511, 2005.

    Article  Google Scholar 

  17. J. Taillard, P. Sanchez, P. Lemoine, and J. Mouret, “Heart rate circadian rhythm as a biological marker of desynchronization in major depression: A methodological and preliminary report,” Chronobiology international, vol. 7, no. 4, pp. 305–316, 1990.

    Article  Google Scholar 

  18. J. Taillard, P. Lemoine, P. Boule, M. Drogue, and J. Mouret, “Sleep and heart rate circadian rhythm in depression: The necessity to separate,” Chronobiology International, vol. 10, no. 1, pp. 63–72, 1993.

    Article  Google Scholar 

  19. R. Carney, K. Freedland, M. Rich, and A. Jaffe, “Depression as a risk factor for cardiac events in established coronary heart disease: a review of possible mechanisms,” Annals of Behavioral Medicine, vol. 17, no. 2, pp. 142–149, 1995.

    Article  Google Scholar 

  20. A. Glassman, “Depression, cardiac death, and the central nervous system,” Neuropsychobiology, vol. 37, no. 2, pp. 80–83, 1998.

    Article  Google Scholar 

  21. L. Watkins, J. Blumenthal, and R. Carney, “Association of anxiety with reduced baroreflex cardiac control in patients after acute myocardial infarction,” American Heart Journal, vol. 143, no. 3, pp. 460–466, 2002.

    Article  Google Scholar 

  22. A. Fagiolini, K. Chengappa, I. Soreca, and J. Chang, “Bipolar disorder and the metabolic syndrome: causal factors, psychiatric outcomes and economic burden,” CNS drugs, vol. 22, no. 8, pp. 655–669, 2008.

    Article  Google Scholar 

  23. K. Latalova, J. Prasko, T. Diveky, A. Grambal, D. Kamaradova, H. Velartova, J. Salinger, and J. Opavsky, “Autonomic nervous system in euthymic patients with bipolar affective disorder.,” Neuro endocrinology letters, vol. 31, no. 6, p. 829, 2010.

    Google Scholar 

  24. G. Valenza, C. Gentili, A. Lanatà, and E. P. Scilingo, “Mood recognition in bipolar patients through the psyche platform: preliminary evaluations and perspectives,” Artificial intelligence in medicine, vol. 57, no. 1, pp. 49–58, 2013.

    Article  Google Scholar 

  25. B. Levy, “Autonomic nervous system arousal and cognitive functioning in bipolar disorder,” Bipolar disorders, vol. 15, no. 1, pp. 70–79, 2013.

    Article  Google Scholar 

  26. B. L. Henry, A. Minassian, M. P. Paulus, M. A. Geyer, and W. Perry, “Heart rate variability in bipolar mania and schizophrenia,” Journal of psychiatric research, vol. 44, no. 3, pp. 168–176, 2010.

    Article  Google Scholar 

  27. A. Voss, V. Baier, S. Schulz, and K. Bar, “Linear and nonlinear methods for analyses of cardiovascular variability in bipolar disorders,” Bipolar disorders, vol. 8, no. 5p1, pp. 441–452, 2006.

    Google Scholar 

  28. G. Valenza, L. Citi, C. Gentili, A. Lanatá, E. Scilingo, and R. Barbieri, “Point-process nonlinear autonomic assessment of depressive states in bipolar patients.,” Methods of information in medicine, vol. 53, no. 4, 2014.

    Google Scholar 

  29. A. Greco, G. Valenza, A. Lanata, G. Rota, and E. P. Scilingo, “Electrodermal activity in bipolar patients during affective elicitation,” IEEE journal of biomedical and health informatics, vol. 18, no. 6, pp. 1865–1873, 2014.

    Article  Google Scholar 

  30. G. Valenza, M. Nardelli, G. Bertschy, A. Lanata, and E. Scilingo, “Mood states modulate complexity in heartbeat dynamics: A multiscale entropy analysis,” EPL (Europhysics Letters), vol. 107, no. 1, p. 18003, 2014.

    Article  Google Scholar 

  31. G. Valenza, M. Nardelli, A. Lanata, C. Gentili, G. Bertschy, R. Paradiso, and E. P. Scilingo, “Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis,” Biomedical and Health Informatics, IEEE Journal of, vol. 18, no. 5, pp. 1625–1635, 2014.

    Article  Google Scholar 

  32. A. Lanata, G. Valenza, M. Nardelli, C. Gentili, and E. P. Scilingo, “Complexity index from a personalized wearable monitoring system for assessing remission in mental health,” Biomedical and Health Informatics, IEEE Journal of, vol. 19, no. 1, pp. 132–139, 2015.

    Article  Google Scholar 

  33. G. Valenza, M. Nardelli, C. Gentili, G. Bertschy, M. Kosel, E. P. Scilingo, et al., “Predicting mood changes in bipolar disorder through heartbeat nonlinear dynamics,”

    Google Scholar 

  34. G. Valenza, L. Citi, C. Gentili, A. Lanatá, E. P. Scilingo, and R. Barbieri, “Characterization of depressive states in bipolar patients using wearable textile technology and instantaneous heart rate variability assessment,” IEEE journal of biomedical and health informatics, vol. 19, no. 1, pp. 263–274, 2015.

    Article  Google Scholar 

  35. G. Valenza and E. P. Scilingo, Autonomic Nervous System Dynamics for Mood and Emotional-State Recognition: Significant Advances in Data Acquisition, Signal Processing and Classification. Springer Science & Business Media, 2014.

    Google Scholar 

  36. E. Scilingo, A. Gemignani, R. Paradiso, N. Taccini, B. Ghelarducci, and D. De Rossi, “Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables,” Information Technology in Biomedicine, IEEE Transactions on, vol. 9, no. 3, pp. 345–352, 2005.

    Article  Google Scholar 

  37. C. W. Gardiner et al., Handbook of stochastic methods, vol. 3. Springer Berlin, 1985.

    Google Scholar 

  38. R. Kohavi and F. Provost, “Glossary of terms,” Machine Learning, vol. 30, pp. 271–274, 1998.

    Article  Google Scholar 

  39. M. Bauer, C. Vojta, B. Kinosian, L. Altshuler, and H. Glick, “The internal state scale: replication of its discriminating abilities in a multisite, public sector sample,” Bipolar Disorders, vol. 2, no. 4, pp. 340–346, 2000.

    Article  Google Scholar 

  40. D. McNair, M. Lorr, and L. Droppleman, “Poms: profile of mood states,” Educational and Industrial Testing Service publisher, San Diego (CA), USA, 1971.

    Google Scholar 

  41. A. Rush, M. Trivedi, H. Ibrahim, T. Carmody, B. Arnow, D. Klein, et al., “The 16-item quick inventory of depressive symptomatology (qids), clinician rating (qids-c), and self-report (qids-sr): a psychometric evaluation in patients with chronic major depression,” Biological psychiatry, vol. 54, no. 5, pp. 573–583, 2003.

    Article  Google Scholar 

  42. R. Young, J. Biggs, V. Ziegler, and D. Meyer, “A rating scale for mania: reliability, validity and sensitivity.,” The British Journal of Psychiatry, vol. 133, no. 5, pp. 429–435, 1978.

    Article  Google Scholar 

  43. L. Conti, Repertorio delle scale di valutazione in psichiatria. SEE, Florence, Italy, 1999.

    Google Scholar 

  44. M. Farné, A. Sebellico, D. Gnugnoli, and A. Corallo, Profile Of Mood States: versione italiana. Giunti OS, Florence, Italy., 1991.

    Google Scholar 

  45. A. Mehrabian and E. O’Reilly, “Analysis of personality measures in terms of basic dimensions of temperament.,” Journal of Personality and Social Psychology, vol. 38, no. 3, p. 492, 1980.

    Article  Google Scholar 

  46. E. Frank, R. F. Prien, R. B. Jarrett, M. B. Keller, D. J. Kupfer, P. W. Lavori, A. J. Rush, and M. M. Weissman, “Conceptualization and rationale for consensus definitions of terms in major depressive disorder: remission, recovery, relapse, and recurrence,” Archives of general psychiatry, vol. 48, no. 9, pp. 851–855, 1991.

    Article  Google Scholar 

  47. M. Berk, F. Ng, W. V. Wang, J. R. Calabrese, P. B. Mitchell, G. S. Malhi, and M. Tohen, “The empirical redefinition of the psychometric criteria for remission in bipolar disorder,” Journal of affective disorders, vol. 106, no. 1, pp. 153–158, 2008.

    Article  Google Scholar 

  48. S. Gopal, D. C. Steffens, M. L. Kramer, and M. K. Olsen, “Symptomatic remission in patients with bipolar mania: results from a double-blind, placebo-controlled trial of risperidone monotherapy.,” Journal of Clinical Psychiatry, vol. 66, no. 8, pp. 1016–1020, 2005.

    Article  Google Scholar 

  49. A. Camm, M. Malik, J. Bigger, G. Breithardt, S. Cerutti, R. Cohen, et al., “Heart rate variability: standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996.

    Article  Google Scholar 

  50. J. Pan and W. Tompkins, “A real-time QRS detection algorithm,” IEEE Transactions on Biomedical Engineering, pp. 230–236, 1985.

    Google Scholar 

  51. R. Berger, S. Akselrod, D. Gordon, and R. Cohen, “An efficient algorithm for spectral analysis of heart rate variability,” Biomedical Engineering, IEEE Transactions on, no. 9, pp. 900–904, 2007.

    Google Scholar 

  52. J. Webster et al., Medical instrumentation: application and design. John Wiley, New York, USA, 1998.

    Google Scholar 

  53. U. Rajendra Acharya, K. Paul Joseph, N. Kannathal, C. Lim, and J. Suri, “Heart rate variability: a review,” Medical and Biological Engineering and Computing, vol. 44, no. 12, pp. 1031–1051, 2006.

    Google Scholar 

  54. G. Valenza, A. Lanata, and E. P. Scilingo, “The role of nonlinear dynamics in affective valence and arousal recognition,” Affective Computing, IEEE Transactions On, vol. 3, no. 2, pp. 237–249, 2012.

    Article  Google Scholar 

  55. H. Akaike, “Fitting autoregressive models for prediction,” Annals of the Institute of Statistical Mathematics, vol. 21, no. 1, pp. 243–247, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Koelstra, A. Yazdani, M. Soleymani, C. Mühl, J. Lee, A. Nijholt, et al., “Single Trial Classification of EEG and Peripheral Physiological Signals for Recognition of Emotions Induced by Music Videos,” Brain Informatics, pp. 89–100, 2010.

    Google Scholar 

  57. J. Mendel, “Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications,” Proceedings of the IEEE, vol. 79, no. 3, pp. 278–305, 1991.

    Article  Google Scholar 

  58. C. Nikias, “Higher-order spectral analysis: A nonlinear signal processing framework,” PTR Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1993.

    Book  MATH  Google Scholar 

  59. K. Chua, V. Chandran, U. Acharya, and C. Lim, “Application of higher order statistics/spectra in biomedical signals–a review,” Medical engineering & physics, vol. 32, no. 7, pp. 679–689, 2010.

    Article  Google Scholar 

  60. F. Atyabi, M. Livari, K. Kaviani, and M. Tabar, “Two statistical methods for resolving healthy individuals and those with congestive heart failure based on extended self-similarity and a recursive method,” Journal of Biological Physics, vol. 32, no. 6, pp. 489–495, 2006.

    Article  Google Scholar 

  61. L. Glass, “Introduction to controversial topics in nonlinear science: Is the normal heart rate chaotic?,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 19, no. 2, p. 028501, 2009.

    MathSciNet  Google Scholar 

  62. L. Glass, “Synchronization and rhythmic processes in physiology,” Nature, vol. 410, no. 6825, pp. 277–284, 2001.

    Article  Google Scholar 

  63. A. Goldberger, C. Peng, and L. Lipsitz, “What is physiologic complexity and how does it change with aging and disease?,” Neurobiology of aging, vol. 23, no. 1, pp. 23–26, 2002.

    Article  Google Scholar 

  64. C. Poon and C. Merrill, “Decrease of cardiac chaos in congestive heart failure,” Nature, vol. 389, no. 6650, pp. 492–495, 1997.

    Article  Google Scholar 

  65. M. Tulppo, A. Kiviniemi, A. Hautala, M. Kallio, T. Seppanen, T. Makikallio, et al., “Physiological background of the loss of fractal heart rate dynamics,” Circulation, vol. 112, no. 3, p. 314, 2005.

    Article  Google Scholar 

  66. G. Wu, N. Arzeno, L. Shen, D. Tang, D. Zheng, N. Zhao, et al., “Chaotic signatures of heart rate variability and its power spectrum in health, aging and heart failure,” PloS one, vol. 4, no. 2, p. e4323, 2009.

    Article  Google Scholar 

  67. A. Lyapunov, “Problem general de la stabilite du mouvement,” Ann. Math. Stud, vol. 17, 1949.

    Google Scholar 

  68. D. Ruelle, “Where can one hope to profitably apply the ideas of chaos?,” Physics Today, vol. 47, p. 24, 1994.

    Article  Google Scholar 

  69. Y. Fusheng, H. Bo, and T. Qingyu, “Approximate Entropy and its application in biosignal analysis,” Nonlinear biomedical signal processing, p. 72, 2000.

    Google Scholar 

  70. J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039–H2049, 2000.

    Google Scholar 

  71. N. Marwan, M. Carmen Romano, M. Thiel, and J. Kurths, “Recurrence plots for the analysis of complex systems,” Physics Reports, vol. 438, no. 5–6, pp. 237–329, 2007.

    Google Scholar 

  72. J. Zbilut and C. Webber Jr, Recurrence quantification analysis. Wiley Online Library, New York, USA, 2006.

    Book  MATH  Google Scholar 

  73. C. Peng, S. Buldyrev, S. Havlin, M. Simons, H. Stanley, and A. Goldberger, “Mosaic organization of dna nucleotides,” Physical Review E, vol. 49, no. 2, p. 1685, 1994.

    Article  Google Scholar 

  74. C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1, pp. 82–87, 1995.

    Google Scholar 

  75. M. Rosenstein, J. Collins, and C. De Luca, “A practical method for calculating largest lyapunov exponents from small data sets,” Physica D: Nonlinear Phenomena, vol. 65, no. 1–2, pp. 117–134, 1993.

    Google Scholar 

  76. S. M. Pincus, “Approximate entropy as a measure of system complexity.,” Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297–2301, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  77. C. Peng, S. Havlin, H. Stanley, and A. Goldberger, “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos An Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1, p. 82, 1995.

    Article  Google Scholar 

  78. W. KinneBrock, Neural Networks. Oldenburg Verlag, Munchen, Germany, 1992.

    MATH  Google Scholar 

  79. L. Ivonin, H.-M. Chang, W. Chen, and M. Rauterberg, “Automatic recognition of the unconscious reactions from physiological signals,” in Human Factors in Computing and Informatics, pp. 16–35, Springer, 2013.

    Google Scholar 

  80. L. Ivonin, H.-M. Chang, W. Chen, and M. Rauterberg, “Unconscious emotions: quantifying and logging something we are not aware of,” Personal and ubiquitous computing, vol. 17, no. 4, pp. 663–673, 2013.

    Article  Google Scholar 

  81. R. Calvo and S. D’Mello, “Affect detection: An interdisciplinary review of models, methods, and their applications,” Affective Computing, IEEE Transactions on, vol. 1, no. 1, pp. 18–37, 2010.

    Article  Google Scholar 

  82. G. Valenza, A. Lanatá, and E. P. Scilingo, “Improving emotion recognition systems by embedding cardiorespiratory coupling,” Physiological measurement, vol. 34, no. 4, p. 449, 2013.

    Article  Google Scholar 

  83. G. Valenza, P. Allegrini, A. Lanatà, and E. Scilingo, “Dominant lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation,” Frontiers in Neuroengineering, vol. 5, 2012.

    Google Scholar 

  84. A. Koukopoulos, D. Reginaldi, L. Tondo, C. Visioli, and R. Baldessarini, “Course sequences in bipolar disorder: depressions preceding or following manias or hypomanias,” Journal of affective disorders, vol. 151, no. 1, pp. 105–110, 2013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Valenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Valenza, G., Scilingo, E.P. (2017). Exploiting Physiological Sensors and Biosignal Processing to Enhance Monitoring Care in Mental Health. In: Khan, S., Zomaya, A., Abbas, A. (eds) Handbook of Large-Scale Distributed Computing in Smart Healthcare. Scalable Computing and Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-58280-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58280-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58279-5

  • Online ISBN: 978-3-319-58280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics