Skip to main content

Molecularly Targeted Therapies in Pancreatic Cancer

  • Chapter
  • First Online:
Current and Emerging Therapies in Pancreatic Cancer

Abstract

The advent of molecularly targeted therapies ushered a major change in the management of several cancers. Unfortunately, to date, there are no molecularly targeted drugs that have demonstrated activity in pancreatic cancer. Randomized clinical trials have evaluated agents targeting cellular signaling pathways (EGFR, MUC1, farnesyl transferase, HIF1-α, MAPK, JAK, and sonic hedgehog), angiogenesis (VEGF, VEGFR), and stromal remodeling (matrix metalloproteinase). Failure of molecularly targeted therapies in pancreatic cancer may be due to inappropriate patient selection, clinical study design, redundant signaling pathways, and unreliable preclinical models. Ongoing trials are evaluating agents targeting cancer stemness (STAT), DNA repair pathways (PARP), and stromal remodeling (hyaluronidase). The focus of this chapter is to discuss the development of molecularly targeted therapies in pancreatic cancer and to review ongoing trials of promising agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hruban RH, Petersen GM, Goggins M, et al. Familial pancreatic cancer. Ann Oncol. 1999;10(Suppl 4):69–73.

    Article  PubMed  Google Scholar 

  2. Bardeesy N, Sinha M, Hezel AF, et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature. Sep 12 2002;419(6903):162–7.

    Article  CAS  PubMed  Google Scholar 

  3. Jančík S, Drábek J, Radzioch D, Hajdúch M. Clinical relevance of KRAS in human cancers. Biomed Res Int. 2010;2010:150960.

    Google Scholar 

  4. Siegel-Lakhai WS, Crul M, Zhang S, et al. Phase I and pharmacological study of the farnesyltransferase inhibitor tipifarnib (Zarnestra, R115777) in combination with gemcitabine and cisplatin in patients with advanced solid tumours. Br J Cancer. Nov 28 2005;93(11):1222–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gore L, Holden SN, Cohen RB, et al. A phase I safety, pharmacological and biological study of the farnesyl protein transferase inhibitor, tipifarnib and capecitabine in advanced solid tumors. Ann Oncol. Nov 2006;17(11):1709–17.

    Article  CAS  PubMed  Google Scholar 

  6. Sparreboom A, Kehrer DF, Mathijssen RH, et al. Phase I and pharmacokinetic study of irinotecan in combination with R115777, a farnesyl protein transferase inhibitor. Br J Cancer. Apr 19 2004;90(8):1508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zujewski J, Horak ID, Bol CJ, et al. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol Off J Am Soc Clin Oncol. Feb 2000;18(4):927–41.

    Article  CAS  Google Scholar 

  8. Cohen SJ, Gallo J, Lewis NL, et al. Phase I and pharmacokinetic study of the farnesyltransferase inhibitor R115777 in combination with irinotecan in patients with advanced cancer. Cancer Chemother Pharmacol. Jun 2004;53(6):513–8.

    Article  CAS  PubMed  Google Scholar 

  9. Patnaik A, Eckhardt SG, Izbicka E, et al. A Phase I, Pharmacokinetic, and Biological Study of the Farnesyltransferase Inhibitor Tipifarnib in Combination with Gemcitabine in Patients with Advanced Malignancies. Clinical Cancer Res. Oct 15 2003;9:4761–71.

    Google Scholar 

  10. Van Cutsem E, van de Velde H, Karasek P, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol Off J Am Soc Clin Oncol. Apr 15 2004;22(8):1430–8.

    Article  Google Scholar 

  11. Jones LE, Humphreys MJ, Campbell F, Neoptolemos JP, Boyd MT. Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res. Apr 15 2004;10(8):2832–45.

    Article  CAS  PubMed  Google Scholar 

  12. Moore MJ, Hamm J, Dancey J, et al. Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: a phase III trial of the national cancer institute of Canada clinical trials group. J Clin Oncol Off J Am Soc Clin Oncol. Sep 1 2003;21(17):3296–302.

    Article  CAS  Google Scholar 

  13. Bramhall SR, Rosemurgy A, Brown PD, Bowry C, Buckels JA, Marimastat Pancreatic Cancer Study G. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol Off J Am Soc Clin Oncol. Aug 1 2001;19(15):3447–55.

    Article  CAS  Google Scholar 

  14. Bramhall SR, Schulz J, Nemunaitis J, Brown PD, Baillet M, Buckels JA. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer. Jul 15 2002;87(2):161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the national cancer institute of Canada clinical trials group. J Clin Oncol. May 20 2007;25(15):1960–6.

    Article  CAS  PubMed  Google Scholar 

  16. Miksad RA, Schnipper L, Goldstein M. Does a statistically significant survival benefit of erlotinib plus gemcitabine for advanced pancreatic cancer translate into clinical significance and value? J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(28):4506–7. author reply 4508

    Article  Google Scholar 

  17. Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist. 2002;7(Suppl 4):2–8.

    Article  CAS  PubMed  Google Scholar 

  18. Philip PA, Benedetti J, Corless CL, et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: southwest oncology group-directed intergroup trial S0205. J Clin Oncol Off J Am Soc Clin Oncol. Aug 1 2010;28(22):3605–10.

    Article  CAS  Google Scholar 

  19. https://http://www.ncbi.nlm.nih.gov/pubmed/20606093–comments.

  20. da Cunha Santos G, Dhani N, Tu D, et al. Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer: national cancer institute of Canada clinical trials group study PA.3. Cancer. Dec 15 2010;116(24):5599–607.

    Article  PubMed  Google Scholar 

  21. Boeck S, Jung A, Laubender RP, et al. EGFR pathway biomarkers in erlotinib-treated patients with advanced pancreatic cancer: translational results from the randomised, crossover phase 3 trial AIO-PK0104. Br J Cancer. Feb 5 2013;108(2):469–76.

    Article  CAS  PubMed  Google Scholar 

  22. Boeck S, Jung A, Laubender RP, et al. KRAS mutation status is not predictive for objective response to anti-EGFR treatment with erlotinib in patients with advanced pancreatic cancer. J Gastroenterol. Apr 2013;48(4):544–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ellis LM, Takahashi Y, Fenoglio CJ, Cleary KR, Bucana CD, Evans DB. Vessel counts and vascular endothelial growth factor expression in pancreatic adenocarcinoma. Eur J Cancer. Feb 1998;34(3):337–40.

    Article  CAS  PubMed  Google Scholar 

  24. Doi Y, Yashiro M, Yamada N, Amano R, Noda S, Hirakawa K. VEGF-A/VEGFR-2 signaling plays an important role for the motility of pancreas cancer cells. Ann Surg Oncol. Aug 2012;19(8):2733–43.

    Article  PubMed  Google Scholar 

  25. Higgins KJ, Abdelrahim M, Liu S, Yoon K, Safe S. Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem Biophys Res Commun. Jun 23 2006;345(1):292–301.

    Article  CAS  PubMed  Google Scholar 

  26. Doi Y, Yashiro M, Yamada N, et al. Significance of phospho-vascular endothelial growth factor receptor-2 expression in pancreatic cancer. Cancer Sci. Jun 2010;101(6):1529–35.

    Article  CAS  PubMed  Google Scholar 

  27. Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol. Jan 2013;14(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  28. Zinner RG, Obasaju CK, Spigel DR, et al. PRONOUNCE: randomized, open-label, phase III study of first-line pemetrexed + carboplatin followed by maintenance pemetrexed versus paclitaxel + carboplatin + bevacizumab followed by maintenance bevacizumab in patients ith advanced nonsquamous non-small-cell lung cancer. J Thorac Oncol. Jan 2015;10(1):134–42.

    Article  CAS  PubMed  Google Scholar 

  29. Kindler HL, Niedzwiecki D, Hollis D, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the cancer and leukemia group B (CALGB 80303). J Clin Oncol Off J Am Soc Clin Oncol. Aug 1 2010;28(22):3617–22.

    Article  CAS  Google Scholar 

  30. Van Cutsem E, Vervenne WL, Bennouna J, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol Off J Am Soc Clin Oncol. May 1 2009;27(13):2231–7.

    Article  Google Scholar 

  31. European Medicines Agency. Inlyta®film-coated tablets: summary of product characteristics (online).http://www.emea.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002406//WC500132188.pdf.

  32. Kindler HL, Ioka T, Richel DJ, et al. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. Lancet Oncol. Mar 2011;12(3):256–62.

    Article  CAS  PubMed  Google Scholar 

  33. Duda DG, Ancukiewicz M, Jain RK. Biomarkers of antiangiogenic therapy: how do we move from candidate biomarkers to valid biomarkers? J Clin Oncol Off J Am Soc Clin Oncol. Jan 10 2010;28(2):183–5.

    Article  CAS  Google Scholar 

  34. Pant S, Martin LK, Geyer S, et al. Baseline serum albumin is a predictive biomarker for patients with advanced pancreatic cancer treated with bevacizumab: a pooled analysis of 7 prospective trials of gemcitabine-based therapy with or without bevacizumab. Cancer. Jun 15 2014;120(12):1780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. May 2015;16(5):499–508.

    Article  CAS  PubMed  Google Scholar 

  36. Wilke H, Muro K, Van Cutsem E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. Oct 2014;15(11):1224–35.

    Article  CAS  PubMed  Google Scholar 

  37. Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. Jan 4 2014;383(9911):31–9.

    Article  CAS  PubMed  Google Scholar 

  38. clinicaltrial.gov.

  39. Chou A, Waddell N, Cowley MJ, et al. Clinical and molecular characterization of HER2 amplified-pancreatic cancer. Genome Med. 2013;5(8):78.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harder J, Ihorst G, Heinemann V, et al. Multicentre phase II trial of trastuzumab and capecitabine in patients with HER2 overexpressing metastatic pancreatic cancer. Br J Cancer. Mar 13 2012;106(6):1033–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Safran H, Iannitti D, Ramanathan R, et al. Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress HER-2/neu. Cancer Investig. 2004;22(5):706–12.

    Article  CAS  Google Scholar 

  42. Quintas-Cardama A, Verstovsek S. Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res. Apr 15 2013;19(8):1933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nixon AB, Pang H, Starr MD, et al. Prognostic and predictive blood-based biomarkers in patients with advanced pancreatic cancer: results from CALGB80303 (alliance). Clin Cancer Res. Dec 15 2013;19(24):6957–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakachi K, Furuse J, Ishii H, Suzuki E, Yoshino M. Prognostic factors in patients with gemcitabine-refractory pancreatic cancer. Jpn J Clin Oncol. Feb 2007;37(2):114–20.

    Article  PubMed  Google Scholar 

  45. McMillan DC, Elahi MM, Sattar N, Angerson WJ, Johnstone J, McArdle CS. Measurement of the systemic inflammatory response predicts cancer-specific and non-cancer survival in patients with cancer. Nutr Cancer. 2001;41(1–2):64–9.

    Article  CAS  PubMed  Google Scholar 

  46. Mascarenhas J, Hoffman R. Ruxolitinib: the first FDA approved therapy for the treatment of myelofibrosis. Clin Cancer Res. Jun 1 2012;18(11):3008–14.

    Article  CAS  PubMed  Google Scholar 

  47. Chou DH, Vetere A, Choudhary A, et al. Kinase-independent small-molecule inhibition of JAK-STAT signaling. J Am Chem Soc. Jun 24 2015;137(24):7929–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hurwitz HI, Uppal N, Wagner SA, et al. Randomized, double-blind, phase II study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. J Clin Oncol. 2015;33(34):4039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Incyte press release JANUS 1. 2016; http://www.businesswire.com/news/home/20160211005321/en/Incyte-Announces-Decision-Discontinue-JANUS-Studies-Ruxolitinib. Accessed 12 Apr 2016.

  50. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02119663. 2015.

  51. CF Q, Li Y, Song YJ, et al. MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by (213)Bi-C595 radioimmunoconjugate. Br J Cancer. Dec 13 2004;91(12):2086–93.

    Article  Google Scholar 

  52. Dotan E, Alpaugh RK, Ruth K, et al. Prognostic significance of MUC-1 in circulating tumor cells in patients with metastatic pancreatic adenocarcinoma. Pancreas. 2016;45(8):1131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gulec SA, Cohen SJ, Pennington KL, et al. Treatment of advanced pancreatic carcinoma with 90Y-Clivatuzumab Tetraxetan: a phase I single-dose escalation trial. Clin Cancer Res. Jun 15 2011;17(12):4091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ocean AJ, Pennington KL, Guarino MJ, et al. Fractionated radioimmunotherapy with (90) Y-clivatuzumab tetraxetan and low-dose gemcitabine is active in advanced pancreatic cancer: a phase 1 trial. Cancer. Nov 15 2012;118(22):5497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Immunomedics provides update on phase 3 PANCRIT-1 trial of clivatuzumab tetraxetan in patients with advanced pancreatic cancer. 2016; https://globenewswire.com/news-release/2016/03/14/819641/0/en/Immunomedics-Provides-Update-on-Phase-3-PANCRIT-1-Trial-of-Clivatuzumab-Tetraxetan-in-Patients-With-Advanced-Pancreatic-Cancer.html. Accessed 12 Apr 2016.

  56. Paulson AS, Tran Cao HS, Tempero MA, Lowy AM. Therapeutic advances in pancreatic cancer. Gastroenterology. Jun 2013;144(6):1316–26.

    Article  CAS  PubMed  Google Scholar 

  57. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. Nov 2012;367(18):1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. JR I. A randomized, double-blind, placebo-controlled trial of trametinib, a MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas [abstract]. J Clin Oncol. 2013;31(Suppl. 4):a291.

    Google Scholar 

  59. Eric VC. Phase II randomized trial of MEK inhibitor pimasertib or placebo combined with gemcitabine in the first-line treatment of metastatic pancreatic cancer [abstract]. J Clin Oncol. 2015;33(Suppl. 3):a344.

    Google Scholar 

  60. Bodoky G, Timcheva C, Spigel DR, et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Investig New Drugs. Jun 2012;30(3):1216–23.

    Article  CAS  Google Scholar 

  61. Garrido-Laguna I, Tan AC, Uson M, et al. Integrated preclinical and clinical development of mTOR inhibitors in pancreatic cancer. Br J Cancer. Aug 24 2010;103(5):649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wolpin BM, Hezel AF, Abrams T, et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol Off J Am Soc Clin Oncol. Jan 10 2009;27(2):193–8.

    Article  CAS  Google Scholar 

  63. Klumpen HJ, Queiroz KC, Spek CA, et al. mTOR inhibitor treatment of pancreatic cancer in a patient with Peutz-Jeghers syndrome. J Clin Oncol Off J Am Soc Clin Oncol. Feb 20 2011;29(6):e150–3.

    Article  Google Scholar 

  64. Ko AH, Tempero MA, Bekaii-Saab TB, et al. Dual MEK/EGFR inhibition for advanced, chemotherapy-refractory pancreatic cancer: A multicenter phase II trial of selumetinib (AZD6244; ARRY-142886) plus erlotinib. Paper presented at: ASCO Annual Meeting Proceedings. 2013.

    Google Scholar 

  65. Chung VM, McDonough SL, Philip PA, et al. SWOG S1115: Randomized phase II trial of selumetinib (AZD6244; ARRY 142886) hydrogen sulfate (NSC-748727) and MK-2206 (NSC-749607) vs. mFOLFOX in pretreated patients (Pts) with metastatic pancreatic cancer. Paper presented at: ASCO Annual Meeting Proceedings. 2015.

    Google Scholar 

  66. Weisz B, Giehl K, Gana-Weisz M, et al. A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene. Apr 22 1999;18(16):2579–88.

    Article  CAS  PubMed  Google Scholar 

  67. Laheru D, Shah P, Rajeshkumar NV, et al. Integrated preclinical and clinical development of S-trans, trans-farnesylthiosalicylic acid (FTS, Salirasib) in pancreatic cancer. Investig New Drugs. 2012;30(6):2391–9.

    Article  CAS  Google Scholar 

  68. Réjiba S, Wack S, Aprahamian M, Hajri A. K-ras oncogene silencing strategy reduces tumor growth and enhances gemcitabine chemotherapy efficacy for pancreatic cancer treatment. Cancer Sci. 2007;98(7):1128–36.

    Article  PubMed  Google Scholar 

  69. Khvalevsky EZ, Gabai R, Rachmut IH, et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci. 2013;110(51):20723–8.

    Article  CAS  Google Scholar 

  70. Golan T, Khvalevsky EZ, Hubert A, et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. Sep 15 2015;6(27):24560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Feldmann G, Habbe N, Dhara S, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut. Oct 2008;57(10):1420–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kelleher FC. Hedgehog signaling and therapeutics in pancreatic cancer. Carcinogenesis. Apr 2011;32(4):445–51.

    Article  CAS  PubMed  Google Scholar 

  73. Walter K, Omura N, Hong SM, et al. Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clin Cancer Res. Mar 15 2010;16(6):1781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science (New York, NY). Jun 12 2009;324(5933):1457–61.

    Article  CAS  Google Scholar 

  75. Catenacci DVT, Bahary N, Nattam SR, et al. Final analysis of a phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer (PC): a university of Chicago phase II consortium study. J Clin Oncol. 2013;31(15_suppl):4012. (Meeting Abstracts). May 20, 2013

    Google Scholar 

  76. Scholz A, Heinze S, Detjen KM, et al. Activated signal transducer and activator of transcription 3 (STAT3) supports the malignant phenotype of human pancreatic cancer. Gastroenterology. Sep 2003;125(3):891–905.

    Article  CAS  PubMed  Google Scholar 

  77. Fukuda A, Wang SC, JPt M, et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell. Apr 12 2011;19(4):441–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Denley SM, Jamieson NB, McCall P, et al. Activation of the IL-6R/Jak/stat pathway is associated with a poor outcome in resected pancreatic ductal adenocarcinoma. J Gastrointest Surg. May 2013;17(5):887–98.

    Article  PubMed  Google Scholar 

  79. Venkatasubbarao K, Peterson L, Zhao S, et al. Inhibiting signal transducer and activator of transcription-3 increases response to gemcitabine and delays progression of pancreatic cancer. Mol Cancer. 2013;12(1):104.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. Aug 26 2010;29(34):4741–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Safi Shahda BFE-R, O'Neil BH, Starodub A, Hanna WT, Borodyansky L, Oh C, Li C, Bekaii-Saab TS. A phase Ib study of cancer stem cell (CSC) pathway inhibitor BBI-608 in combination with gemcitabine and nab-paclitaxel (nab-PTX) in patients (pts) with metastatic pancreatic ductal adenocarcinoma (mPDAC). J Clin Oncol. 2016;34(suppl 4S):284. 2016 Gastrointestinal Cancers Symposium

    Article  Google Scholar 

  82. Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. Dec 4 2014;371(23):2167–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassel F. El-Rayes M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shaib, W.L., El-Rayes, B.F. (2018). Molecularly Targeted Therapies in Pancreatic Cancer. In: Bekaii-Saab, T., El-Rayes, B. (eds) Current and Emerging Therapies in Pancreatic Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-58256-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58256-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58255-9

  • Online ISBN: 978-3-319-58256-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics