Skip to main content

Imaging of the Tricuspid Valve: Magnetic Resonance Imaging

  • Chapter
Practical Manual of Tricuspid Valve Diseases

Abstract

Echocardiography is considered as the main modality for the assessment of tricuspid valve disease. However, echocardiography has technical limitations as well as anatomic limitations when comes to complex structures of the tricuspid valve and the right side of the heart. Cardiac magnetic resonance (CMR) is considered as the gold standard for the assessment of right ventricle. In this chapter, we will discuss potential role of CMR in tricuspid valve disease. Imaging protocols, advantages and limitations of CMR imaging of the tricuspid valve complex will be discussed. Furthermore, CMR role in assessment of tricuspid regurgitation severity will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choo WS, Steeds RP. Cardiac imaging in valvular heart disease. Br J Radiol. 2011;84(Spec No 3):S245–57.

    Google Scholar 

  2. Vogel M, Gutberlet M, Dittrich S, Hosten N, Lange PE. Comparison of transthoracic three dimensional echocardiography with magnetic resonance imaging in the assessment of right ventricular volume and mass. Heart. 1997;78(2):127–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bastarrika G, Cao MG, Cano D, Barba J, de Buruaga JD. Magnetic resonance imaging diagnosis of carcinoid heart disease. J Comput Assist Tomogr. 2005;29(6):756–9.

    Article  PubMed  Google Scholar 

  4. Pignatelli RH, McMahon CJ, Chung T, Vick GW III. Role of echocardiography versus MRI for the diagnosis of congenital heart disease. Curr Opin Cardiol. 2003;18(5):357–65.

    Article  PubMed  Google Scholar 

  5. Fukuda S, Saracino G, Matsumura Y, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation. 2006;114(1 Suppl):I492–8.

    PubMed  Google Scholar 

  6. Anwar AM, Soliman OI, Nemes A, van Geuns RJ, Geleijnse ML, Ten Cate FJ. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2007;23(6):701–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cawley PJ, Maki JH, Otto CM. Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. Circulation. 2009;119(3):468–78.

    Article  PubMed  Google Scholar 

  8. Krombach GA, Kuhl H, Bucker A, et al. Cine MR imaging of heart valve dysfunction with segmented true fast imaging with steady state free precession. J Magn Reson Imaging. 2004;19(1):59–67.

    Article  PubMed  Google Scholar 

  9. Saremi F, Hassani C, Millan-Nunez V, Sanchez-Quintana D. Imaging evaluation of tricuspid valve: analysis of morphology and function with CT and MRI. AJR Am J Roentgenol. 2015;204(5):W531–42.

    Article  PubMed  Google Scholar 

  10. Boxt LM. Magnetic resonance and computed tomographic evaluation of congenital heart disease. J Magn Reson Imaging. 2004;19(6):827–47.

    Article  PubMed  Google Scholar 

  11. Helbing WA, Rebergen SA, Maliepaard C, et al. Quantification of right ventricular function with magnetic resonance imaging in children with normal hearts and with congenital heart disease. Am Heart J. 1995;130(4):828–37.

    Article  CAS  PubMed  Google Scholar 

  12. Gerola LR, Wafae N, Vieira MC, Juliano Y, Smith R, Prates JC. Anatomic study of the tricuspid valve in children. Surg Radiol Anat. 2001;23(3):149–53.

    Article  CAS  PubMed  Google Scholar 

  13. Silver MD, Lam JH, Ranganathan N, Wigle ED. Morphology of the human tricuspid valve. Circulation. 1971;43(3):333–48.

    Article  CAS  PubMed  Google Scholar 

  14. Martinez RM, O'Leary PW, Anderson RH. Anatomy and echocardiography of the normal and abnormal tricuspid valve. Cardiol Young. 2006;16(Suppl 3):4–11.

    Article  PubMed  Google Scholar 

  15. Aktas EO, Govsa F, Kocak A, Boydak B, Yavuz IC. Variations in the papillary muscles of normal tricuspid valve and their clinical relevance in medicolegal autopsies. Saudi Med J. 2004;25(9):1176–85.

    PubMed  Google Scholar 

  16. Taramasso M, Vanermen H, Maisano F, Guidotti A, La CG, Alfieri O. The growing clinical importance of secondary tricuspid regurgitation. J Am Coll Cardiol. 2012;59(8):703–10.

    Article  PubMed  Google Scholar 

  17. Ton-Nu TT, Levine RA, Handschumacher MD, et al. Geometric determinants of functional tricuspid regurgitation: insights from 3-dimensional echocardiography. Circulation. 2006;114(2):143–9.

    Article  PubMed  Google Scholar 

  18. Duerk JL. Principles of MR image formation and reconstruction. Magn Reson Imaging Clin N Am. 1999;7(4):629–59.

    CAS  PubMed  Google Scholar 

  19. Mugler JP III. Overview of MR imaging pulse sequences. Magn Reson Imaging Clin N Am. 1999;7(4):661–97.

    PubMed  Google Scholar 

  20. Maeba S, Taguchi T, Midorikawa H, Kanno M, Sueda T. Four-dimensional geometric assessment of tricuspid annulus movement in early functional tricuspid regurgitation patients indicates decreased longitudinal flexibility. Interact Cardiovasc Thorac Surg. 2013;16(6):743–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wintersperger BJ, Becker CR, Gulbins H, et al. Tumors of the cardiac valves: imaging findings in magnetic resonance imaging, electron beam computed tomography, and echocardiography. Eur Radiol. 2000;10(3):443–9.

    Article  CAS  PubMed  Google Scholar 

  22. Pollak Y, Comeau CR, Wolff SD. Staphylococcus aureus endocarditis of the aortic valve diagnosed on MR imaging. AJR Am J Roentgenol. 2002;179(6):1647.

    Article  PubMed  Google Scholar 

  23. Sievers B, Brandts B, Franken U, Trappe HJ. Cardiovascular magnetic resonance imaging demonstrates mitral valve endocarditis. Am J Med. 2003;115(8):681–2.

    Article  PubMed  Google Scholar 

  24. Evans AJ, Blinder RA, Herfkens RJ, et al. Effects of turbulence on signal intensity in gradient echo images. Investig Radiol. 1988;23(7):512–8.

    Article  CAS  Google Scholar 

  25. Westermann Y, Geigenmuller A, Elgeti T, et al. Planimetry of the aortic valve orifice area: comparison of multislice spiral computed tomography and magnetic resonance imaging. Eur J Radiol. 2011;77(3):426–35.

    Article  PubMed  Google Scholar 

  26. Wagner S, Auffermann W, Buser P, et al. Diagnostic accuracy and estimation of the severity of valvular regurgitation from the signal void on cine magnetic resonance images. Am Heart J. 1989;118(4):760–7.

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki J, Caputo GR, Kondo C, Higgins CB. Cine MR imaging of valvular heart disease: display and imaging parameters affect the size of the signal void caused by valvular regurgitation. AJR Am J Roentgenol. 1990;155(4):723–7.

    Article  CAS  PubMed  Google Scholar 

  28. Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15(10):2172–84.

    Article  PubMed  Google Scholar 

  29. Mostbeck GH, Caputo GR, Higgins CB. MR measurement of blood flow in the cardiovascular system. AJR Am J Roentgenol. 1992;159(3):453–61.

    Article  CAS  PubMed  Google Scholar 

  30. Kayser HW, Stoel BC, Van der Wall EE, van der Geest RJ, de Roos A. MR velocity mapping of tricuspid flow: correction for through-plane motion. J Magn Reson Imaging. 1997;7(4):669–73.

    Article  CAS  PubMed  Google Scholar 

  31. Kilner PJ, Gatehouse PD, Firmin DN. Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson. 2007;9(4):723–8.

    Article  PubMed  Google Scholar 

  32. Hundley WG, Li HF, Willard JE, et al. Magnetic resonance imaging assessment of the severity of mitral regurgitation. Comparison with invasive techniques. Circulation. 1995;92(5):1151–8.

    Article  CAS  PubMed  Google Scholar 

  33. Westenberg JJ, Roes SD, Ajmone MN, et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 2008;249(3):792–800.

    Article  PubMed  Google Scholar 

  34. Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17:72.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rajappan K, Livieratos L, Camici PG, Pennell DJ. Measurement of ventricular volumes and function: a comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med. 2002;43(6):806–10.

    PubMed  Google Scholar 

  36. Myerson SG. Heart valve disease: investigation by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bogaert J. Cardiac function. In: Bogaert J, Dymarkowski S, Taylor AM, Muthurangu V, editors. Clinical cardiac MRI. 2nd ed. Berlin: Springer-Verlag; 2012. p. 109–65.

    Chapter  Google Scholar 

  38. Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part I. J Cardiovasc Magn Reson. 2010;12:71.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thavendiranathan P, Phelan D, Collier P, Thomas JD, Flamm SD, Marwick TH. Quantitative assessment of mitral regurgitation: how best to do it. JACC Cardiovasc Imaging. 2012;5(11):1161–75.

    Article  PubMed  Google Scholar 

  40. Fratz S, Chung T, Greil GF, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wright J, Bogaert J. CMR-Basic principles. In: Zambrano J, Bax J, Knuuti J, Sechtem U, Lancellotti P, Badano L, editors. The ESC textbook of cardiovascular imaging. 2nd ed. Oxford: Oxford Press; 2016. p. 55–63.

    Google Scholar 

  42. Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15:35.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Biglands JD, Radjenovic A, Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part II. J Cardiovasc Magn Reson. 2012;14:66.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ridgway JP. Special pulse sequences for cardiac imaging. In: Plein S, Greenwood J, Ridgeway JP, editors. Cardiovascular MR manual. Heidelberg: Springer International Publishing; 2015. p. 129–50.

    Chapter  Google Scholar 

  45. Huber AM, Schoenberg SO, Hayes C, et al. Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction. Radiology. 2005;237(3):854–60.

    Article  PubMed  Google Scholar 

  46. Wildgruber M, Settles M, Kosanke K, et al. Evaluation of phase-sensitive versus magnitude reconstructed inversion recovery imaging for the assessment of myocardial infarction in mice with a clinical magnetic resonance scanner. J Magn Reson Imaging. 2012;36(6):1372–82.

    Article  PubMed  Google Scholar 

  47. Satoh H, Sano M, Suwa K, et al. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis. World J Cardiol. 2014;6(7):585–601.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grosse-Wortmann L, Macgowan CK, Vidarsson L, Yoo SJ. Late gadolinium enhancement of the right ventricular myocardium: is it really different from the left ? J Cardiovasc Magn Reson. 2008;10:20.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Singh JP, Evans JC, Levy D, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol. 1999;83(6):897–902.

    Article  CAS  PubMed  Google Scholar 

  50. Hung J. The pathogenesis of functional tricuspid regurgitation. Semin Thorac Cardiovasc Surg. 2010;22(1):76–8.

    Article  PubMed  Google Scholar 

  51. Ubago JL, Figueroa A, Ochoteco A, Colman T, Duran RM, Duran CG. Analysis of the amount of tricuspid valve anular dilatation required to produce functional tricuspid regurgitation. Am J Cardiol. 1983;52(1):155–8.

    Article  CAS  PubMed  Google Scholar 

  52. Tutarel O, Westhoff-Bleck M. The double-orifice tricuspid valve: a review. J Heart Valve Dis. 2007;16(5):508–10.

    PubMed  Google Scholar 

  53. Hauck AJ, Freeman DP, Ackermann DM, Danielson GK, Edwards WD. Surgical pathology of the tricuspid valve: a study of 363 cases spanning 25 years. Mayo Clin Proc. 1988;63(9):851–63.

    Article  CAS  PubMed  Google Scholar 

  54. Thatipelli MR, Uber PA, Mehra MR. Isolated tricuspid stenosis and heart failure: a focus on carcinoid heart disease. Congest Heart Fail. 2003;9(5):294–6.

    Article  PubMed  Google Scholar 

  55. Lagarde O, Garabedian V, Coignard A, Duret JC, Piwnica A, Droniou J. Congenital tricuspid insufficiency due to valvular dysplasia. Review of the literature in light of a case in a 40-year-old adult. Arch Mal Coeur Vaiss. 1980;73(4):387–96.

    CAS  PubMed  Google Scholar 

  56. Kim HK, Kim YJ, Park EA, et al. Assessment of haemodynamic effects of surgical correction for severe functional tricuspid regurgitation: cardiac magnetic resonance imaging study. Eur Heart J. 2010;31(12):1520–8.

    Article  PubMed  Google Scholar 

  57. Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg. 2012;42(4):S1–44.

    Article  PubMed  Google Scholar 

  58. Tulevski II, Romkes H, Dodge-Khatami A, et al. Quantitative assessment of the pressure and volume overloaded right ventricle: imaging is a real challenge. Int J Cardiovasc Imaging. 2002;18(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  59. Papavassiliu T, Kuhl HP, Schroder M, et al. Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology. 2005;236(1):57–64.

    Article  PubMed  Google Scholar 

  60. Sievers B, Kirchberg S, Bakan A, Franken U, Trappe HJ. Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2004;6(1):9–16.

    Article  PubMed  Google Scholar 

  61. Winter MM, Bernink FJ, Groenink M, et al. Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J Cardiovasc Magn Reson. 2008;10:40.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ferguson EC, Krishnamurthy R, Oldham SA. Classic imaging signs of congenital cardiovascular abnormalities. Radiographics. 2007;27(5):1323–34.

    Article  PubMed  Google Scholar 

  63. Attenhofer Jost CH, Edmister WD, Julsrud PR, et al. Prospective comparison of echocardiography versus cardiac magnetic resonance imaging in patients with Ebstein’s anomaly. Int J Cardiovasc Imaging. 2012;28(5):1147–59.

    Article  PubMed  Google Scholar 

  64. Kuhn A, De Pasquale MG, Muller J, et al. Tricuspid valve surgery improves cardiac output and exercise performance in patients with Ebstein’s anomaly. Int J Cardiol. 2013;166(2):494–8.

    Article  PubMed  Google Scholar 

  65. Attenhofer Jost CH, Connolly HM, Edwards WD, Hayes D, Warnes CA, Danielson GK. Ebstein's anomaly – review of a multifaceted congenital cardiac condition. Swiss Med Wkly. 2005;135(19–20):269–81.

    CAS  PubMed  Google Scholar 

  66. Arya P, Beroukhim R. Ebstein anomaly: assessment, management, and timing of intervention. Curr Treat Options Cardiovasc Med. 2014;16(10):338.

    Article  PubMed  Google Scholar 

  67. Hösch O, Charlotte Alt S, Paul T, Lotz J, Steinmetz M, Schuster A. Managing Ebstein’s anomaly of the tricuspid valve: impact of cardiovascular magnetic resonance. J Cardiol Ther. 2014;1(7):154–9.

    Google Scholar 

  68. Marcus RH, Sareli P, Pocock WA, Barlow JB. The spectrum of severe rheumatic mitral valve disease in a developing country. Correlations among clinical presentation, surgical pathologic findings, and hemodynamic sequelae. Ann Intern Med. 1994;120(3):177–83.

    Article  CAS  PubMed  Google Scholar 

  69. Daniels SJ, Mintz GS, Kotler MN. Rheumatic tricuspid valve disease: two-dimensional echocardiographic, hemodynamic, and angiographic correlations. Am J Cardiol. 1983;51(3):492–6.

    Article  CAS  PubMed  Google Scholar 

  70. Akinosoglou K, Apostolakis E, Koutsogiannis N, Leivaditis V, Gogos CA. Right-sided infective endocarditis: surgical management. Eur J Cardiothorac Surg. 2012;42(3):470–9.

    Article  PubMed  Google Scholar 

  71. Bashore TM, Cabell C, Fowler V Jr. Update on infective endocarditis. Curr Probl Cardiol. 2006;31(4):274–352.

    Article  PubMed  Google Scholar 

  72. Dursun M, Yilmaz S, Yilmaz E, et al. The utility of cardiac MRI in diagnosis of infective endocarditis: preliminary results. Diagn Interv Radiol. 2015;21(1):28–33.

    Article  PubMed  Google Scholar 

  73. Jeong J, Kim HJ, Kim SM, Huh J, Yang JH, Choe YH. Diagnosis of right ventricular vegetation on late gadolinium-enhanced MR imaging in a pediatric patient after repair of a ventricular septal defect. Investig Magn Reson Imaging. 2016;20(2):114–9.

    Article  Google Scholar 

  74. Eslami-Varzaneh F, Brun EA, Sears-Rogan P. An unusual case of multiple papillary fibroelastoma, review of literature. Cardiovasc Pathol. 2003;12(3):170–3.

    Article  PubMed  Google Scholar 

  75. Kulke MH, Mayer RJ. Carcinoid tumors. N Engl J Med. 1999;340(11):858–68.

    Article  CAS  PubMed  Google Scholar 

  76. Lundin L, Norheim I, Landelius J, Oberg K, Theodorsson-Norheim E. Carcinoid heart disease: relationship of circulating vasoactive substances to ultrasound-detectable cardiac abnormalities. Circulation. 1988;77(2):264–9.

    Article  CAS  PubMed  Google Scholar 

  77. Pellikka PA, Tajik AJ, Khandheria BK, et al. Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients. Circulation. 1993;87(4):1188–96.

    Article  CAS  PubMed  Google Scholar 

  78. Simula DV, Edwards WD, Tazelaar HD, Connolly HM, Schaff HV. Surgical pathology of carcinoid heart disease: a study of 139 valves from 75 patients spanning 20 years. Mayo Clin Proc. 2002;77(2):139–47.

    Article  PubMed  Google Scholar 

  79. Moerman VM, Dewilde D, Hermans K. Carcinoid heart disease: typical findings on echocardiography and cardiac magnetic resonance. Acta Cardiol. 2012;67(2):245–8.

    Article  PubMed  Google Scholar 

  80. Sandmann H, Pakkal M, Steeds R. Cardiovascular magnetic resonance imaging in the assessment of carcinoid heart disease. Clin Radiol. 2009;64(8):761–6.

    Article  CAS  PubMed  Google Scholar 

  81. Fussen S, De Boeck BW, Zellweger MJ, et al. Cardiovascular magnetic resonance imaging for diagnosis and clinical management of suspected cardiac masses and tumours. Eur Heart J. 2011;32(12):1551–60.

    Article  PubMed  Google Scholar 

  82. Motwani M, Kidambi A, Herzog BA, Uddin A, Greenwood JP, Plein S. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology. 2013;268(1):26–43.

    Article  PubMed  Google Scholar 

  83. Pazos-Lopez P, Pozo E, Siqueira ME, et al. Value of CMR for the differential diagnosis of cardiac masses. JACC Cardiovasc Imaging. 2014;7(9):896–905.

    Article  PubMed  Google Scholar 

  84. Tumma R, Dong W, Wang J, Litt H, Han Y. Evaluation of cardiac masses by CMR-strengths and pitfalls: a tertiary center experience. Int J Cardiovasc Imaging. 2016;32(6):913–20.

    Article  PubMed  Google Scholar 

  85. Yuan SM, Jing H, Lavee J. Tumors and tumor-like lesions of the heart valves. Rare Tumors. 2009;1(2):e35.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Aeba R, Katogi T, Hashizume K, et al. Liberal use of tricuspid valve detachment for transatrial ventricular septal defect closure. Ann Thorac Surg. 2003;76(4):1073–7.

    Article  PubMed  Google Scholar 

  87. Mahgoub A, Kamel H, Simry W, Hosny H. Repair of very severe tricuspid regurgitation following detachment of the tricuspid valve. Glob Cardiol Sci Pract. 2015;2015:14.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Najib MQ, Vittala SS, Challa S, et al. Predictors of severe tricuspid regurgitation in patients with permanent pacemaker or automatic implantable cardioverter-defibrillator leads. Tex Heart Inst J. 2013;40(5):529–33.

    PubMed  PubMed Central  Google Scholar 

  89. Popescu BA, Gurzun MM, Carmen Ginghina Tricuspid and pulmonary valve disease. Zambrano J, Bax J, Knuuti J, Sechtem U, Lancellotti P, Badano L The ESC textbook of cardiovascular imaging 2 Oxford: Oxford Press; 2015. 171–184.

    Chapter  Google Scholar 

  90. Chiribiri A, Fairborn T. Valvular heart disease. In: Plein S, Greenwood J, Ridgeway JP, editors. Cardiovascular MR manual. Heidelberg: Springer International Publishing; 2015. p. 357–70.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soha Romeih M.D., Ph.D., F.E.S.C. .

Editor information

Editors and Affiliations

Review Questions

Review Questions

Select the Single Best Sentence

  1. 48.

    Which of the following statement regarding Cardiac MRI (CMR) assessment of tricuspid valve is correct?

    1. (a)

      CMR slice thickness is often similar to TV leaflet thickness (1–2 mm)

    2. (b)

      The slice thickness of CMR images is typically 5–8 mm

    3. (c)

      The slice thickness of steady state free-precession (SSFP) sequences is 2 mm

    4. (d)

      The slice thickness of the spoiled gradient echo (SGE) sequences is 1 mm

  2. 49.

    Which of the following statement regarding Cardiac MRI (CMR) assessment of tricuspid regurgitation volume is correct?

    1. (a)

      CMR 2D phase-contrast velocity mapping sequence is the standard method for tricuspid regurgitation fraction calculation

    2. (b)

      4D CMR flow is more accurate method for tricuspid regurgitation fraction calculation than 2D CMR phase-contrast flow

    3. (c)

      Cardiac motion is a major limitation of 4D flow

    4. (d)

      None of the above

  3. 50.

    Which of the following statement regarding Cardiac MRI (CMR) assessment of patients with tricuspid regurgitation is correct?

    1. (a)

      CMR is more accurate than echocardiography for the assessment of right heart function

    2. (b)

      CMR is more accurate than echocardiography for the assessment of tricuspid valve leaflets

    3. (c)

      CMR is more accurate than echocardiography for the assessment of papillary muscles

    4. (d)

      CMR is less accurate than echocardiography for the assessment of tricuspid annulus

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Romeih, S., El Fawal, S. (2018). Imaging of the Tricuspid Valve: Magnetic Resonance Imaging. In: Soliman, O.I., ten Cate, F.J. (eds) Practical Manual of Tricuspid Valve Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-58229-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58229-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58228-3

  • Online ISBN: 978-3-319-58229-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics