Skip to main content

Anatomy and Pathology of the Tricuspid Valve

  • Chapter
Practical Manual of Tricuspid Valve Diseases

Abstract

The tricuspid valve (TV), the morphologically right atrioventricular valve, guards the inflow junction between the right atrium and right ventricle. In functional anatomy, the valve does not consist only of leaflets. Instead, the valve complex is comprised of the annulus, leaflets, tendinous cords and papillary muscles occupying the inlet part of the right ventricle. Right sided structures have not had the extensive analysis when viewed in comparison to the systemic mitral valve. This is possibly due to the complexity of measuring the geometrically unusual shape of the right ventricular cavity, tricuspid valve, the curvature of the muscular ventricular septum and the right ventricular cavity wrapping around the systemic left ventricle. The route of inflow to outflow in the low pressure right ventricle (RV) is elongated compared to the left side of the heart. The right ventricle itself is an anterior structure forming the sterno-costal border of the heart beneath the sternum. The tricuspid valve is always associated with a morphological right ventricle. The chamber can be arbitrarily demarcated into three regions: inlet, apical and outlet, hence the concept of a tripartite ventricle. But, there are no anatomic borders for these regions within the right ventricle. The inflow region of the tricuspid valve is separated from the outflow pulmonary valve by several muscular structures; the ventricular infundibular fold (VIF), septomarginal trabeculation (SMT), septoparietal trabeculations (SPT) and the free standing subpulmonary infundibulum musculature (Fig. 1.1). Adjacent along the atrial side tricuspid valve complex are important structures like the triangle of Koch, tendon of Todaro, atrioventricular node continuing into the bundle of His and coronary sinus orifice (Fig. 1.2). Continuing improvements of imaging methods such as echocardiography, cardiac magnetic resonance imaging and computed tomography to examine in detail and analyse these structures and to measure the flow of deoxygenated blood to the lungs from the right heart allows critical analysis and on-going follow up of patients in normal and disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taramasso M, Vanermen H, Maisano F, Guidotti A, La Canna G, Alfieri O. The growing clinical importance of secondary tricuspid regurgitation. J Am Coll Cardiol. 2012;59:703–10.

    Article  PubMed  Google Scholar 

  2. Angelini A, Ho SY, Anderson RH, Davies MJ, Becker AE. A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. Br Heart J. 1988;59(6):712–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ueda A, McCarthy KP, Sánchez-Quintana D, Ho SY. Right atrial appendage and vestibule: further anatomical insights with implications for invasive electrophysiology. Europace. 2013;15(5):728–34.

    Article  PubMed  Google Scholar 

  4. Yacoub MH, Cohn LH. Novel approaches to cardiac valve repair from structure to function: part I. Circulation. 2004;109:942–50.

    Article  PubMed  Google Scholar 

  5. Misfeld M, Sievers HH. Heart valve macro- and microstructure. Philos Trans R Soc Lond B Biol Sci. 2007;362:1421–36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kwan J, Kim GC, Jeon MJ, Kim DH, Shiota T, Thomas JD, Park KS, Lee WH. 3D geometry of a normal tricuspid annulus during systole: a comparison study with the mitral annulus using real-time 3D echocardiography. Eur J Echocardiogr. 2007;8:375–83.

    Article  PubMed  Google Scholar 

  7. Shah PM, Raney AA. Tricuspid valve disease. Curr Probl Cardiol. 2008;33:47–84.

    Article  PubMed  Google Scholar 

  8. Rogers JH, Bolling SF. The tricuspid valve. current perspective and evolving management of tricuspid regurgitation. Circulation. 2009;119:2718–25.

    Article  PubMed  Google Scholar 

  9. Bateman MG, Quill JL, Hill AJ, Iaizzo PA. The clinical anatomy and pathology of the human atrioventricular valves: implications for repair or replacement. J Cardiovasc Trans Res. 2013;6:155–65.

    Article  Google Scholar 

  10. Fukuda S, Saracino G, Matsumara Y, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation. 2006;114:I492–8.

    Article  PubMed  Google Scholar 

  11. Fawzy H, Fukamachi K, Mazer CD, Harrington A, Latter D, Bonneau D, Errett L. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J Thorac Cardiovasc Surg. 2011;141:1037–43.

    Article  PubMed  Google Scholar 

  12. Dwivedi G, Mahadevan G, Jimenez D, Frenneaux M, Steeds RP. Reference values for mitral and tricuspid annular dimensions using two-dimensional echocardiography. Echo Res Pract. 2014;1(2):43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Silver MD, Lam JHC, Ranganathan N, Wigle ED. Morphology of the human tricuspid valve. Circulation. 1971;43:333–48.

    Article  CAS  PubMed  Google Scholar 

  14. Tsakiris AG, Mai DD, Seki S, et al. Motion of the tricuspid valve annulus in anesthetized intact dogs. Circ Res. 1975;36(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sutton JP, Ho SY, Vogel M, Anderson RH. Is the morphologically right atrioventricular valve tricuspid? J Heart Valve Dis. 1995;4(6):571–5.

    PubMed  Google Scholar 

  16. Dreyfus GD, Martin RP, KMJ C, Dulguerov F, Alexandrescu C. Functional tricuspid regurgitation. a need to revise our understanding. J Am Coll Cardiol. 2015;65(21):2331–6.

    Article  PubMed  Google Scholar 

  17. Huttin O, Voilliot D, Mandry D, Vennera C, Juillière Y, Selton-Sutya C. All you need to know about the tricuspid valve: tricuspid valve imaging and tricuspid regurgitation analysis. Arch Cardiovasc Dis. 2016;109:67–80.

    Article  PubMed  Google Scholar 

  18. Tretter JT, Sarwark AE, Anderson RH, Spicer DE. Assessment of the anatomical variation to be found in the normal tricuspid valve. Clin Anat. 2016;29:399–407.

    Article  PubMed  Google Scholar 

  19. Davies MJ. The mitral valve. In:Pathology of cardiac valves. London: Butterworths; 1980.

    Google Scholar 

  20. Ikegaya T, Kurata C, Hayashi H, Muro H, Yamazaki N. A case of congenital tricuspid valve abnormality showing six leaflets. Eur Heart J. 1991;12:94–5.

    Article  CAS  PubMed  Google Scholar 

  21. Wafae N, Hayashi H, Gerola LR, Vieira MC. Anatomical study of the human tricuspid valve. Surg Radiol Anat. 1990;12:37–41.

    Article  CAS  PubMed  Google Scholar 

  22. Antoniali F, Braile DM, Poterio GMB, da Costa CE, Lopes MM, Ribeiro GCA, Tarelho LDS. Proportion among the segments of the normal tricuspid valve annulus: parameter for valve annuloplasty. Braz J Cardiovasc Surg. 2006;21(3):262–71.

    Google Scholar 

  23. Skwarek M, Hreczecha J, Dudziak M, Jerzemowski J, Szpinda M, Grzybiak M. Morphometric features of the right atrioventricular orifice in adult human hearts. Folia Morphol (Warsz). 2008;67(1):53–7.

    CAS  Google Scholar 

  24. Otto S, Baum T, Keller F. Sex-dependence of the relative number of elastic fibres in human heart valves. Ann Anat. 2006;188:153–8.

    Article  CAS  PubMed  Google Scholar 

  25. Stetler-Stevenson WG. Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol. 1996;148:1345–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Grande-Allen KJ, Calabro A, Gupta V, Wight TN, Hascall VC, Vesely I. Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology. 2004;14:621–33.

    Article  CAS  PubMed  Google Scholar 

  27. Iozzo RV. The biology of the small leucine-rich proteoglycans. J Biol Chem. 1999;274(27):18843–6.

    Article  CAS  PubMed  Google Scholar 

  28. McDonald PC, Wilson JE, McNeill S, Gao M, Spinelli JJ, Rosenberg F, Wiebe H, McManus BM. The challenge of defining normality for human mitral and aortic valves. Geometrical and compositional analysis. Cardiovasc Pathol. 2002;11:193–209.

    Article  PubMed  Google Scholar 

  29. Filip DA, Radu A, Simionescu M. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res. 1986;59:310–20.

    Article  CAS  PubMed  Google Scholar 

  30. Woessner FJ, Nagase H. Introduction, overview of the individual TIMPS; Protein substrates of the MMPs. In:Matrix metalloproteinases and TIMPs. 2nd ed. New York: Oxford University Press; 2002.

    Google Scholar 

  31. Dreger SA, Taylor PM, Allen SP, Yacoub MH. Profile and localization of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in human heart valves. J Heart Valve Dis. 2002;11:875–80.

    PubMed  Google Scholar 

  32. Roy A, Brand NJ, Yacoub MH. Molecular characterization of interstitial cells isolated from human heart valves. J Heart Valve Disease. 2000;9:459–64.

    CAS  Google Scholar 

  33. Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH. The cardiac valve interstitial cell. Int J Biochem Cell Biol. 2003;35:113–8.

    Article  CAS  PubMed  Google Scholar 

  34. Hafizi S, Taylor PM, Chester AH, Allen SP, Yacoub MH. Mitogenic and secretory responses of human valve interstitial cells to vasoactive agents. J Heart Valve Disease. 2000;9:454–8.

    CAS  Google Scholar 

  35. Mulholland DL, Gotlieb AI. Cardiac valve interstitial cells: regulator of valve structure and function. Cardiovasc Pathol. 1997;6:167–74.

    Article  Google Scholar 

  36. Ottani V, Raspanti M, Ruggeri A. Collagen structure and functional applications. Micron. 2001;32:251–60.

    Article  CAS  PubMed  Google Scholar 

  37. Zanaboni G, Rossi A, Tina Onana AM, Tenni R. Stability and networks of hydrogen bonds of the collagen triple helical structure: influence of pH and chaotrophic nature of three anions. Matrix Biol. 2000;19:511–20.

    Article  CAS  PubMed  Google Scholar 

  38. Bard JBL, Hulmes DJS, Purdom IF, Ross ASA. Chick corneal development in vitro: diverse effects of pH on collagen assembly. J Cell Sci. 1993;105:1045–55.

    CAS  PubMed  Google Scholar 

  39. Aktas EO, Govsa F, Kocak A, Boydak B, Yavuz IC. Variations in the papillary muscles of normal tricuspid valve and their clinical relevance in medicolegal autopsies. Saudi Med J. 2004;25(9):1176–85.

    PubMed  Google Scholar 

  40. Loukas M, Tubbs RS, Louis RG Jr, Apaydin N, Bartczak A, Huseng V, Alsaiegh N, Fudalej M. An endoscopic and anatomical approach to the septal papillary muscle of the conus. Surg Radiol Anat. 2009;31:701–6.

    Article  PubMed  Google Scholar 

  41. Gross L, Kugel MA. Topographic anatomy and histology of the valves in the human heart. Am J Pathol. 1931;7:445–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Paraskevas G, Koutsouflianiotis K, Iliou K. The first descriptions of various anatomical structures and embryological remnants of the heart: a systematic overview. Int J Cardiol. 2017;227:674–90.

    Article  CAS  PubMed  Google Scholar 

  43. Mascherbauer J, Maurer G. The forgotten valve: lessons to be learned in tricuspid regurgitation. Eur Heart J. 2010;31:2841–3.

    Article  PubMed  Google Scholar 

  44. D’Aloia A, Bonadei I, Vizzardi E, Sciatti E, Bugatti S, Curnis A, Metra M. Different types of tricuspid flail: case reports and review of the literature. Hell J Cardiol. 2016;57:134–7.

    Article  Google Scholar 

  45. Godart F, Piot D, Rey C. Parachute tricuspid valve, supravalvar tricuspid ring, and coarctation of aorta in congenitally corrected transposition. Cardiol Young. 1997;7:337–9.

    Google Scholar 

  46. Fiorelli AI, Coelho GHB, Aiello VD, Benvenuti LA, Palazzo JF, Santos Júnior VP, Canizares B, Dias RR, Stolf NAG. Tricuspid valve injury after heart transplantation due to endomyocardial biopsy: an analysis of 3550 biopsies. Transplant Proc. 2012;44:2479–82.

    Article  CAS  PubMed  Google Scholar 

  47. Schreiber C, Cook A, Ho SY, Augustin N, Anderson RH. Morphologic spectrum of Ebstein's malformation: revisitation relative to surgical repair. J Thorac Cardiovasc Surg. 1999;117(1):148–55.

    Article  CAS  PubMed  Google Scholar 

  48. Milo S, Ho SY, Macartney FJ, Wilkinson JL, Becker AE, Wenink AC, Gittenberger de Groot AC, Anderson RH. Straddling and overriding atrioventricular valves: morphology and classification. Am J Cardiol. 1979;44(6):1122–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen P. McCarthy .

Editor information

Editors and Affiliations

Appendices

Take Home Points

  • The tricuspid valve is not simply the leaflets but a valve complex involving the cords, papillary muscles, annulus and the surrounding musculature.

  • The valve remodels during aging becoming thicker and prone to regurgitation.

  • With numerous scallops, cord attachment and papillary muscle morphology, the tricuspid valve has greater variation than the anatomy of the mitral valve.

Review Questions

  1. 1.

    Which of the following sentences is correct?

    1. (a)

      The tricuspid valve has greater variation than the anatomy of the mitral valve

    2. (b)

      The tricuspid valve has always three clearly identifiable three leaflets as proven on post-mortem studies

    3. (c)

      the tricuspid valve leaflets position is less apical than those of the mitral valve

    4. (d)

      The tricuspid valve is not always associated with a morphological right ventricle.

  2. 2.

    Which of the following sentences is correct?

    1. (a)

      The tricuspid valve leaflets are uniform throughout in structure?

    2. (b)

      The tricuspid valve septal and anterior leaflets are uniform throughout in structure?

    3. (c)

      The tricuspid valve septal and posterior leaflets are uniform throughout in structure?

    4. (d)

      The tricuspid valve leaflets are not uniform throughout in structure?

  3. 3.

    Which of the following sentences is correct?

    1. (a)

      Two of the tricuspid valve papillary muscles are attached to septum

    2. (b)

      Unlike the left heart valves, the tricuspid valve is remote from the pulmonary valve

    3. (c)

      The tricuspid orifice is smaller than the mitral orifice

    4. (d)

      The tricuspid annulus has a near horizontal location

  4. 4.

    Which of the following sentences is correct?

    1. (a)

      The attachment of the tricuspid valve leaflets crosses the atrioventricular node?

    2. (b)

      The attachment of the inferior (posterior) tricuspid valve leaflet is the closest to the atrioventricular node?

    3. (c)

      The attachment of the anterior (anterosuperior) tricuspid valve leaflet is the closest to the atrioventricular node?

    4. (d)

      The attachment of the septal tricuspid valve leaflet is separated by the central fibrous body from the atrioventricular node?

  5. 5.

    Which of the following sentences is correct?

    1. (a)

      The right coronary artery runs in closest proximity to the tricuspid annulus at its initial course.

    2. (b)

      The right coronary artery runs always above to the tricuspid annulus.

    3. (c)

      The right coronary artery runs always below to the tricuspid annulus.

    4. (d)

      There is a gradual shortening of the distance between the right coronary artery and the endocardial surface toward the inferior segment of the annulus to <3 mm.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

McCarthy, K.P., Robertus, J.L., Yen Ho, S. (2018). Anatomy and Pathology of the Tricuspid Valve. In: Soliman, O.I., ten Cate, F.J. (eds) Practical Manual of Tricuspid Valve Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-58229-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58229-0_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58228-3

  • Online ISBN: 978-3-319-58229-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics