Skip to main content

Automatic Diagnosis Metabolic Syndrome via a \(k-\)Nearest Neighbour Classifier

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10232))

Included in the following conference series:

Abstract

In this paper, we investigate the automatic diagnosis of patients with metabolic syndrome, i.e., a common metabolic disorder and a risk factor for the development of cardiovascular diseases and type 2 diabetes. Specifically, we employ the k-Nearest neighbour (k-NN) classifier, a supervised machine learning algorithm to learn to discriminate between patients with metabolic syndrome and healthy individuals. To aid accurate identification of the metabolic syndrome we extract different physiological parameters (age, BMI, level of glucose in the blood etc.) that are subsequently used as features in the k-NN classifier. For evaluation, we compare the proposed k-NN algorithm against two baseline machine learning classifiers, namely Naïve Bayes and an artificial Neural Network. Cross-validation experiments on a manually curated dataset of 64 individuals demonstrate that the k-NN classifier improves upon the performance of the baseline methods and it can thus facilitate robust and automatic diagnosis of patients with metabolic syndrome. Finally, we perform feature analysis to determine potential significant correlations between different physiological parameters and the prevalence of the metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)

    Google Scholar 

  2. Bohning, D.: Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 44(1), 197–200 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Camps-Valls, G., Bruzzone, A.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

    Article  Google Scholar 

  4. Behadada O., Trovati M., Chikh M.A. and Bessis N.: Big data-based extraction of fuzzy partition rules for heart arrhythmia detection: a semi-automated approach. Concurrency Comput.: Pract. Exp. (2015)

    Google Scholar 

  5. Biino, G., Concas, M.P., Cena, H., Parracciani, D., Vaccargiu, S., Cosso, M., Marras, F., D’ Esposito, V., Beguinot, F., Pirastu, M.: Dissecting metabolic syndrome components: data from an epidemiologic survey in a genetic isolate. SpringerPlus 4(1), 324 (2015)

    Article  Google Scholar 

  6. Jaspinder, K.: A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014, 943162 (2014). doi:10.1155/2014/943162

    Google Scholar 

  7. Meigs, J.B.: Invited commentary: insulin resistance syndrome? Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors. Am. J. Epidemiol. 152, 908–912 (2000). doi:10.1093/aje/152.10.908

    Article  Google Scholar 

  8. Alberti, K.G., Zimmet, P.Z.: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998). doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S

    Article  Google Scholar 

  9. Alberti, K.G., Eckel, R.H., Grundy, S.M., Zimmet, P.Z., Cleeman, J.I., Donato, K., et al.: Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international. Circulation 120, 1640–1645 (2009). doi:10.1161/CIRCULATIONAHA.109.192644

    Article  Google Scholar 

  10. Belur, V.D.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. Mc Graw-Hill Computer Science Series. IEEE Computer Society Press, Las Alamitos (1991)

    Google Scholar 

  11. Lihua, Y., Qi, D., Yanjun, G.: Study on KNN text categorization algorithm. Micro Comput. Inf. 21, 269–271 (2006)

    Google Scholar 

  12. Suguna, N., Thanushkodi, K.: An improved k-nearest neighbor classification using genetic algorithm. Int. J. Comput. Sci. Issues 7(2), 18–21 (2010)

    Google Scholar 

  13. Eckel, R.H., Grundy, S.M., Zimmet, P.Z.: The metabolic syndrome. Lancet 365(9468), 1415–1428 (2005)

    Article  Google Scholar 

  14. Heier, E.C., Meier, A., Julich-Haertel, H., Djudjaj, S., Rau, M., Tschernig, T., Geier, A., Boor, P., Lammert, F. and Lukacs-Kornek, V.: Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis. Journal of Hepatology (2017)

    Google Scholar 

  15. Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D.C., Roudot-Thoraval, F.: The burden of liver disease in Europe: a review of available epidemiological data. J. Hepatol. 58(3), 593–608 (2013)

    Article  Google Scholar 

  16. Worachartcheewan, A., Nantasenamat, C., Isarankura-Na-Ayudhya, C., Pidetcha, P., Prachayasittikul, V.: Identification of metabolic syndrome using decision tree analysis. Diab. Res. Clin. Pract. 90(1), e15–e18 (2010)

    Article  Google Scholar 

  17. Makrilakis, K., Liatis, S., Grammatikou, S., Perrea, D., Stathi, C., Tsiligros, P., Katsilambros, N.: Validation of the finnish diabetes risk score (FINDRISC) questionnaire for screening for undiagnosed typpe 2 diabetes, dysglycaemia and the metabolic syndrome in Greece. Diab. Metab. 37(2), 144–151 (2011). Vancouver

    Article  Google Scholar 

  18. Helminen, E.E., Mntyselk, P., Nyknen, I., Kumpusalo, E.: Far from easy and accurate-detection of metabolic syndrome by general practitioners. BMC Fam. Pract. 10(1), 76 (2009)

    Article  Google Scholar 

  19. Ushida, Y., Kato, R., Niwa, K., Tanimura, D., Izawa, H., Yasui, K., Takase, T., Yoshida, Y., Kawase, M., Yoshida, T., Murohara, T.: Combinational risk factors of metabolic syndrome identified by fuzzy neural network analysis of health-check data. BMC Med. Inf. Decis. Making 12(1), 80 (2012)

    Article  Google Scholar 

  20. De Kroon, M.L., Renders, C.M., Kuipers, E.C., van Wouwe, J.P., Van Buuren, S., De Jonge, G.A., Hirasing, R.A.: Identifying metabolic syndrome without blood tests in young adults? The Terneuzen Birth Cohort. Eur. J. Public Health 18(6), 656–660 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Kontonatsios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Behadada, O., Abi-Ayad, M., Kontonatsios, G., Trovati, M. (2017). Automatic Diagnosis Metabolic Syndrome via a \(k-\)Nearest Neighbour Classifier. In: Au, M., Castiglione, A., Choo, KK., Palmieri, F., Li, KC. (eds) Green, Pervasive, and Cloud Computing. GPC 2017. Lecture Notes in Computer Science(), vol 10232. Springer, Cham. https://doi.org/10.1007/978-3-319-57186-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57186-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57185-0

  • Online ISBN: 978-3-319-57186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics