Skip to main content

Shigella: Virulence Factors and Pathogenicity

  • Chapter
  • First Online:
Foodborne Pathogens

Part of the book series: Food Microbiology and Food Safety ((PRACT))

  • 2375 Accesses

Abstract

Each year, Shigella species are responsible for an estimated 100–150 million infections worldwide, with nearly 500,000 of these infections occurring in the United States, where approximately 30% of cases can be attributed to the ingestion of contaminated foods. Clinical symptoms associated with shigellosis (otherwise known as bacillary dysentery) include diarrhea, sometimes bloody; fever; stomach cramps; and tenesmus. Possible sequellae of Shigella infection can include hemolytic uremic syndrome (HUS) or rheumatoid arthritis. This pathogen possesses a repertoire of virulence factors that modulate the host innate/adaptive immune systems and enable the bacteria to invade colonic epithelial cells, escape from phagocytic vesicles, and finally destroy mucosal cells lining the intestinal tract. One of the hallmarks of Shigella pathogenesis is utilization of the type three secretion system (T3SS) to insert bacterial effector proteins into host cells. Most of the genetic factors necessary for pathogenicity reside on a large virulence plasmid (pINV), while a few of these genes are in chromosomal pathogenicity islands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abby, S. S., & Rocha, E. P. (2012). The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genetics, 8(9), e1002983. Epub 2012/10/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe, A., Matsuzawa, T., & Kuwae, A. (2005). Type-III effectors: Sophisticated bacterial virulence factors. Comptes Rendus Biologies, 328(5), 413–428. Epub 2005/06/14.

    Article  CAS  PubMed  Google Scholar 

  • Abrusci, P., Vergara-Irigaray, M., Johnson, S., Beeby, M. D., Hendrixson, D. R., Roversi, P., et al. (2013). Architecture of the major component of the type III secretion system export apparatus. Nature Structural & Molecular Biology, 20(1), 99–104. Epub 2012/12/12.

    Article  CAS  Google Scholar 

  • Adam, P. R., Dickenson, N. E., Greenwood 2nd, J. C., Picking, W. L., & Picking, W. D. (2014). Influence of oligomerization state on the structural properties of invasion plasmid antigen B from Shigella flexneri in the presence and absence of phospholipid membranes. Proteins, 82(11), 3013–3022. Epub 2014/08/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, S. F., Klena, J., Husain, T., Monestersky, J., Naguib, A., & Wasfy, M. O. (2013). Genetic characterization of antimicrobial resistance of Shigella flexneri 1c isolates from patients in Egypt and Pakistan. Annals of Clinical Microbiology and Antimicrobials, 12, 9. Epub 2013/05/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akeda, Y., & Galan, J. E. (2005). Chaperone release and unfolding of substrates in type III secretion. Nature, 437(7060), 911–915. Epub 2005/10/07.

    Article  CAS  PubMed  Google Scholar 

  • Al-Hasani, K., Henderson, I. R., Sakellaris, H., Rajakumar, K., Grant, T., Nataro, J. P., et al. (2000). The sigA gene which is borne on the she pathogenicity island of Shigella flexneri 2a encodes an exported cytopathic protease involved in intestinal fluid accumulation. Infection and Immunity, 68(5), 2457–2463. Epub 2000/04/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hasani, K., Rajakumar, K., Bulach, D., Robins-Browne, R., Adler, B., & Sakellaris, H. (2001). Genetic organization of the she pathogenicity island in Shigella flexneri 2a. Microbial Pathogenesis, 30(1), 1–8. Epub 2001/02/13.

    Article  CAS  PubMed  Google Scholar 

  • Allison, G. E., & Verma, N. K. (2000). Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends in Microbiology, 8(1), 17–23. Epub 2000/01/19.

    Article  CAS  PubMed  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. Epub 1990/10/05.

    Article  CAS  PubMed  Google Scholar 

  • Ambrosi, C., Pompili, M., Scribano, D., Limongi, D., Petrucca, A., Cannavacciuolo, S., et al. (2015). The Shigella flexneri OspB effector: An early immunomodulator. International Journal of Medical Microbiology, 305(1), 75–84. Epub 2014/12/02.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, G. P., & Maurelli, A. T. (1992). mxiA of Shigella flexneri 2a, which facilitates export of invasion plasmid antigens, encodes a homolog of the low-calcium-response protein, LcrD, of Yersinia pestis. Infection and Immunity, 60(8), 3287–3295. Epub 1992/08/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arai, Y., Nakano, T., Katayama, Y., Aoki, H., Hirayama, T., Ooi, Y., et al. (2008). Epidemiological evidence of multidrug-resistant Shigella sonnei colonization in India by sentinel surveillance in a Japanese quarantine station. Kansenshōgaku Zasshi, 82(4), 322–327. Epub 2008/08/14.

    Article  PubMed  Google Scholar 

  • Ashida, H., Toyotome, T., Nagai, T., & Sasakawa, C. (2007). Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Molecular Microbiology, 63(3), 680–693. Epub 2007/01/12.

    Article  CAS  PubMed  Google Scholar 

  • Ashida, H., Kim, M., Schmidt-Supprian, M., Ma, A., Ogawa, M., & Sasakawa, C. (2010). A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response. Nature Cell Biology, 12(1), 66–73; sup pp 1–9. Epub 2009/12/17.

    Google Scholar 

  • Ashida, H., Nakano, H., & Sasakawa, C. (2013). Shigella IpaH0722 E3 ubiquitin ligase effector targets TRAF2 to inhibit PKC-NF-kappaB activity in invaded epithelial cells. PLoS Pathogens, 9(6), e1003409. Epub 2013/06/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagg, A., & Neilands, J. B. (1987). Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiological Reviews, 51(4), 509–518. Epub 1987/12/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahrani, F. K., Sansonetti, P. J., & Parsot, C. (1997). Secretion of Ipa proteins by Shigella flexneri: Inducer molecules and kinetics of activation. Infection and Immunity, 65(10), 4005–4010. Epub 1997/10/08.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balcazar, J. L. (2014). Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathogens, 10(7), e1004219. Epub 2014/08/01.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banish, L. D., Sims, R., Sack, D., Montali, R. J., Phillips Jr., L., & Bush, M. (1993). Prevalence of shigellosis and other enteric pathogens in a zoologic collection of primates. Journal of the American Veterinary Medical Association, 203(1), 126–132. Epub 1993/07/01.

    CAS  PubMed  Google Scholar 

  • Barbagallo, M., Di Martino, M. L., Marcocci, L., Pietrangeli, P., De Carolis, E., Casalino, M., et al. (2011). A new piece of the Shigella pathogenicity puzzle: Spermidine accumulation by silencing of the speG gene [corrected]. PLoS One, 6(11), e27226. Epub 2011/11/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barzu, S., Benjelloun-Touimi, Z., Phalipon, A., Sansonetti, P., & Parsot, C. (1997). Functional analysis of the Shigella flexneri IpaC invasin by insertional mutagenesis. Infection and Immunity, 65(5), 1599–1605. Epub 1997/05/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basta, D. W., Pew, K. L., Immak, J. A., Park, H. S., Picker, M. A., Wigley, A. F., et al. (2013). Characterization of the ospZ promoter in Shigella flexneri and its regulation by VirB and H-NS. Journal of Bacteriology, 195(11), 2562–2572. Epub 2013/04/02.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behrens, M., Sheikh, J., & Nataro, J. P. (2002). Regulation of the overlapping pic/set locus in Shigella flexneri and enteroaggregative Escherichia coli. Infection and Immunity, 70(6), 2915–2925. Epub 2002/05/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beloin, C., & Dorman, C. J. (2003). An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Molecular Microbiology, 47(3), 825–838. Epub 2003/01/22.

    Article  CAS  PubMed  Google Scholar 

  • Benjelloun-Touimi, Z., Sansonetti, P. J., & Parsot, C. (1995). SepA, the major extracellular protein of Shigella flexneri: Autonomous secretion and involvement in tissue invasion. Molecular Microbiology, 17(1), 123–135. Epub 1995/07/01.

    Article  CAS  PubMed  Google Scholar 

  • Bennish, M. L. (1991). Potentially lethal complications of shigellosis. Reviews of Infectious Diseases, 13(Suppl 4), S319–S324. Epub 1991/03/01.

    Article  PubMed  Google Scholar 

  • Bergan, J., Dyve Lingelem, A. B., Simm, R., Skotland, T., & Sandvig, K. (2012). Shiga toxins. Toxicon, 60(6), 1085–1107. Epub 2012/09/11.

    Article  CAS  PubMed  Google Scholar 

  • Bernardini, M. L., Mounier, J., d’Hauteville, H., Coquis-Rondon, M., & Sansonetti, P. J. (1989). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proceedings of the National Academy of Sciences of the United States of America, 86(10), 3867–3871. Epub 1989/05/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutin, L., Strauch, E., & Fischer, I. (1999). Isolation of Shigella sonnei lysogenic for a bacteriophage encoding gene for production of Shiga toxin. Lancet, 353(9163), 1498. Epub 1999/05/08.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, S. K., Sarkar, K., Balakrish Nair, G., Faruque, A. S., & Sack, D. A. (2003). Multidrug-resistant Shigella dysenteriae type 1 in south Asia. The Lancet Infectious Diseases, 3(12), 755. Epub 2003/12/04.

    Article  CAS  PubMed  Google Scholar 

  • Bliven, K. A., & Maurelli, A. T. (2012). Antivirulence genes: Insights into pathogen evolution through gene loss. Infection and Immunity, 80(12), 4061–4070. Epub 2012/10/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blocker, A., Gounon, P., Larquet, E., Niebuhr, K., Cabiaux, V., Parsot, C., et al. (1999). The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. The Journal of Cell Biology, 147(3), 683–693. Epub 1999/11/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blocker, A., Jouihri, N., Larquet, E., Gounon, P., Ebel, F., Parsot, C., et al. (2001). Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Molecular Microbiology, 39(3), 652–663. Epub 2001/02/13.

    Article  CAS  PubMed  Google Scholar 

  • Blocker, A., Komoriya, K., & Aizawa, S. (2003). Type III secretion systems and bacterial flagella: Insights into their function from structural similarities. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3027–3030. Epub 2003/03/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blocker, A. J., Deane, J. E., Veenendaal, A. K., Roversi, P., Hodgkinson, J. L., Johnson, S., et al. (2008). What’s the point of the type III secretion system needle? Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6507–6513. Epub 2008/05/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botteaux, A., Kayath, C. A., Page, A. L., Jouihri, N., Sani, M., Boekema, E., et al. (2010). The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri. Microbiology, 156(Pt 9), 2807–2817. Epub 2010/05/29.

    Article  CAS  PubMed  Google Scholar 

  • Bourdet-Sicard, R., Rudiger, M., Jockusch, B. M., Gounon, P., Sansonetti, P. J., & Nhieu, G. T. (1999). Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. The EMBO Journal, 18(21), 5853–5862. Epub 1999/11/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bovee, L., Whelan, J., Sonder, G. J., van Dam, A. P., & van den Hoek, A. (2012). Risk factors for secondary transmission of Shigella infection within households: Implications for current prevention policy. BMC Infectious Diseases, 12, 347. Epub 2012/12/14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandon, L. D., Goehring, N., Janakiraman, A., Yan, A. W., Wu, T., Beckwith, J., et al. (2003). IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Molecular Microbiology, 50(1), 45–60. Epub 2003/09/26.

    Article  CAS  PubMed  Google Scholar 

  • Buchrieser, C., Glaser, P., Rusniok, C., Nedjari, H., D’Hauteville, H., Kunst, F., et al. (2000). The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Molecular Microbiology, 38(4), 760–771. Epub 2000/12/15.

    Google Scholar 

  • Campilongo, R., Di Martino, M. L., Marcocci, L., Pietrangeli, P., Leuzzi, A., Grossi, M., et al. (2014). Molecular and functional profiling of the polyamine content in enteroinvasive E. coli: Looking into the gap between commensal E. coli and harmful Shigella. PLoS One, 9(9), e106589. Epub 2014/09/06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpenter, B. M., Whitmire, J. M., & Merrell, D. S. (2009). This is not your mother’s repressor: The complex role of Fur in pathogenesis. Infection and Immunity, 77(7), 2590–2601. Epub 2009/04/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter, C. D., Cooley, B. J., Needham, B. D., Fisher, C. R., Trent, M. S., Gordon, V., et al. (2014). The Vps/VacJ ABC transporter is required for intercellular spread of Shigella flexneri. Infection and Immunity, 82(2), 660–669. Epub 2014/01/31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casalino, M., Latella, M. C., Prosseda, G., & Colonna, B. (2003). CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infection and Immunity, 71(10), 5472–5479. Epub 2003/09/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales, E., Buchanan, S. K., Duche, D., Kleanthous, C., Lloubes, R., Postle, K., et al. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158–229. Epub 2007/03/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellanos, M. I., Harrison, D. J., Smith, J. M., Labahn, S. K., Levy, K. M., & Wing, H. J. (2009). VirB alleviates H-NS repression of the icsP promoter in Shigella flexneri from sites more than one kilobase upstream of the transcription start site. Journal of Bacteriology, 191(12), 4047–4050. Epub 2009/04/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention. (2011). National Shigella Surveillance Overview. Atlanta, Georgia: US Department of Health and Human Services, CDC; 2011 [cited 2015 2 Mar]; Available from: http://www.cdc.gov/ncezid/dfwed/PDFs/Shigella-Overview-508.pdf

  • Chang, C. Y., Lu, P. L., Lin, C. C., Lee, T. M., Tsai, M. Y., & Chang, L. L. (2011). Integron types, gene cassettes, antimicrobial resistance genes and plasmids of Shigella sonnei isolates from outbreaks and sporadic cases in Taiwan. Journal of Medical Microbiology, 60(Pt 2), 197–204. Epub 2010/10/16.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Smith, M. R., Thirumalai, K., & Zychlinsky, A. (1996). A bacterial invasin induces macrophage apoptosis by binding directly to ICE. The EMBO Journal, 15(15), 3853–3860. Epub 1996/08/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherradi, Y., Hachani, A., & Allaoui, A. (2014). Spa13 of Shigella flexneri has a dual role: Chaperone escort and export gate-activator switch of the type III secretion system. Microbiology, 160(Pt 1), 130–141. Epub 2013/10/16.

    Article  CAS  PubMed  Google Scholar 

  • Coburn, B., Sekirov, I., & Finlay, B. B. (2007). Type III secretion systems and disease. Clinical Microbiology Reviews, 20(4), 535–549. Epub 2007/10/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonna, B., Casalino, M., Fradiani, P. A., Zagaglia, C., Naitza, S., Leoni, L., et al. (1995). H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. Journal of Bacteriology, 177(16), 4703–4712. Epub 1995/08/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes, F. S., Komoriya, K., Larquet, E., Yang, S., Egelman, E. H., Blocker, A., et al. (2003). Helical structure of the needle of the type III secretion system of Shigella flexneri. The Journal of Biological Chemistry, 278(19), 17103–17107. Epub 2003/02/07.

    Article  CAS  PubMed  Google Scholar 

  • Cornelis, G. R. (2006). The type III secretion injectisome. Nature Reviews. Microbiology, 4(11), 811–825. Epub 2006/10/17.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, J. E., Seckute, J., De, S., Schueler, S. A., Oswald, A. B., & Nicholson, L. K. (2009). Elucidation of a pH-folding switch in the Pseudomonas syringae effector protein AvrPto. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8543–8548. Epub 2009/05/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day Jr., W. A., Fernandez, R. E., & Maurelli, A. T. (2001). Pathoadaptive mutations that enhance virulence: Genetic organization of the cadA regions of Shigella spp. Infection and Immunity, 69(12), 7471–7480. Epub 2001/11/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Geyter, C., Vogt, B., Benjelloun-Touimi, Z., Sansonetti, P. J., Ruysschaert, J. M., Parsot, C., et al. (1997). Purification of IpaC, a protein involved in entry of Shigella flexneri into epithelial cells and characterization of its interaction with lipid membranes. FEBS Letters, 400(2), 149–154. Epub 1997/01/03.

    Article  PubMed  Google Scholar 

  • Defilippi, P., Venturino, M., Gulino, D., Duperray, A., Boquet, P., Fiorentini, C., et al. (1997). Dissection of pathways implicated in integrin-mediated actin cytoskeleton assembly. Involvement of protein kinase C, Rho GTPase, and tyrosine phosphorylation. The Journal of Biological Chemistry, 272(35), 21726–21734. Epub 1997/08/29.

    Article  CAS  PubMed  Google Scholar 

  • Di Martino, M. L., Fioravanti, R., Barbabella, G., Prosseda, G., Colonna, B., & Casalino, M. (2013). Molecular evolution of the nicotinic acid requirement within the Shigella/EIEC pathotype. International Journal of Medical Microbiology, 303(8), 651–661. Epub 2013/10/15.

    Article  PubMed  CAS  Google Scholar 

  • Dickenson, N. E., & Picking, W. D. (2012). Forster resonance energy transfer (FRET) as a tool for dissecting the molecular mechanisms for maturation of the Shigella type III secretion needle tip complex. International Journal of Molecular Sciences, 13(11), 15137–15161. Epub 2012/12/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickenson, N. E., Zhang, L., Epler, C. R., Adam, P. R., Picking, W. L., & Picking, W. D. (2011). Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion. Biochemistry, 50(2), 172–180. Epub 2010/12/04.

    Article  CAS  PubMed  Google Scholar 

  • Dorman, C. J., & Porter, M. E. (1998). The Shigella virulence gene regulatory cascade: A paradigm of bacterial gene control mechanisms. Molecular Microbiology, 29(3), 677–684. Epub 1998/09/02.

    Article  CAS  PubMed  Google Scholar 

  • DuPont, H. L., Formal, S. B., Hornick, R. B., Snyder, M. J., Libonati, J. P., Sheahan, D. G., et al. (1971). Pathogenesis of Escherichia coli diarrhea. The New England Journal of Medicine, 285(1), 1–9. Epub 1971/07/01.

    Article  CAS  PubMed  Google Scholar 

  • DuPont, H. L., Levine, M. M., Hornick, R. B., & Formal, S. B. (1989). Inoculum size in shigellosis and implications for expected mode of transmission. The Journal of Infectious Diseases, 159(6), 1126–1128. Epub 1989/06/01.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, S., Iida, K., Takade, A., Meno, Y., Nair, G. B., & Yoshida, S. (2004). Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiology and Immunology, 48(12), 965–969. Epub 2004/12/22.

    Article  CAS  PubMed  Google Scholar 

  • Edgeworth, J. D., Spencer, J., Phalipon, A., Griffin, G. E., & Sansonetti, P. J. (2002). Cytotoxicity and interleukin-1beta processing following Shigella flexneri infection of human monocyte-derived dendritic cells. European Journal of Immunology, 32(5), 1464–1471. Epub 2002/05/01.

    Article  CAS  PubMed  Google Scholar 

  • Egile, C., d’Hauteville, H., Parsot, C., & Sansonetti, P. J. (1997). SopA, the outer membrane protease responsible for polar localization of IcsA in Shigella flexneri. Molecular Microbiology, 23(5), 1063–1073. Epub 1997/03/01.

    Article  CAS  PubMed  Google Scholar 

  • Egile, C., Loisel, T. P., Laurent, V., Li, R., Pantaloni, D., Sansonetti, P. J., et al. (1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. The Journal of Cell Biology, 146(6), 1319–1332. Epub 1999/09/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehsani, S., Santos, J. C., Rodrigues, C. D., Henriques, R., Audry, L., Zimmer, C., et al. (2012). Hierarchies of host factor dynamics at the entry site of Shigella flexneri during host cell invasion. Infection and Immunity, 80(7), 2548–2557. Epub 2012/04/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichelberg, K., Ginocchio, C. C., & Galan, J. E. (1994). Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: Homology of InvC to the F0F1 ATPase family of proteins. Journal of Bacteriology, 176(15), 4501–4510. Epub 1994/08/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, T., & Igarashi, K. (1988). Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. European Journal of Biochemistry, 171(1–2), 45–50. Epub 1988/01/15.

    Article  CAS  PubMed  Google Scholar 

  • Epler, C. R., Dickenson, N. E., Olive, A. J., Picking, W. L., & Picking, W. D. (2009). Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction. Infection and Immunity, 77(7), 2754–2761. Epub 2009/05/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erhardt, M., Namba, K., & Hughes, K. T. (2010). Bacterial nanomachines: The flagellum and type III injectisome. Cold Spring Harbor Perspectives in Biology, 2(11), a000299. Epub 2010/10/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espina, M., Olive, A. J., Kenjale, R., Moore, D. S., Ausar, S. F., Kaminski, R. W., et al. (2006). IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infection and Immunity, 74(8), 4391–4400. Epub 2006/07/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing, W. H. (1949). Shigella nomenclature. Journal of Bacteriology, 57(6), 633–638. Epub 1949/06/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falconi, M., Prosseda, G., Giangrossi, M., Beghetto, E., & Colonna, B. (2001). Involvement of FIS in the H-NS-mediated regulation of virF gene of Shigella and enteroinvasive Escherichia coli. Molecular Microbiology, 42(2), 439–452. Epub 2001/11/13.

    Article  CAS  PubMed  Google Scholar 

  • Fasano, A., Noriega, F. R., Maneval Jr., D. R., Chanasongcram, S., Russell, R., Guandalini, S., et al. (1995). Shigella enterotoxin 1: An enterotoxin of Shigella flexneri 2a active in rabbit small intestine in vivo and in vitro. The Journal of Clinical Investigation, 95(6), 2853–2861. Epub 1995/06/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasano, A., Noriega, F. R., Liao, F. M., Wang, W., & Levine, M. M. (1997). Effect of Shigella enterotoxin 1 (ShET1) on rabbit intestine in vitro and in vivo. Gut, 40(4), 505–511. Epub 1997/04/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, Y., Chen, Z., & Liu, S. L. (2011). Gene decay in Shigella as an incipient stage of host-adaptation. PLoS One, 6(11), e27754. Epub 2011/11/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, I. M., Silva, M., Schuch, R., Walker, W. A., Siber, A. M., Maurelli, A. T., et al. (2001). Cadaverine prevents the escape of Shigella flexneri from the phagolysosome: A connection between bacterial dissemination and neutrophil transepithelial signaling. The Journal of Infectious Diseases, 184(6), 743–753. Epub 2001/08/23.

    Article  CAS  PubMed  Google Scholar 

  • Flexner, S., & Sweet, J. E. (1906). The pathogenesis of experimental colitis, and the relation of colitis in animals and man. The Journal of Experimental Medicine, 8(4), 514–535. Epub 1906/08/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folster, J. P., Pecic, G., Bowen, A., Rickert, R., Carattoli, A., & Whichard, J. M. (2011). Decreased susceptibility to ciprofloxacin among Shigella isolates in the United States, 2006 to 2009. Antimicrobial Agents and Chemotherapy, 55(4), 1758–1760. Epub 2011/01/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine, A., Arondel, J., & Sansonetti, P. J. (1988). Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Tox- mutant of Shigella dysenteriae 1. Infection and Immunity, 56(12), 3099–3109. Epub 1988/12/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, P., Zhang, X., Jin, M., Xu, L., Wang, C., Xia, Z., et al. (2013). Complex structure of OspI and Ubc13: The molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathogens, 9(4), e1003322. Epub 2013/05/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumatsu, M., Ogawa, M., Arakawa, S., Suzuki, M., Nakayama, K., Shimizu, S., et al. (2012). Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells. Cell Host & Microbe, 11(4), 325–336. Epub 2012/04/24.

    Article  CAS  Google Scholar 

  • Gallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K., & Ramos, J. L. (1997). Arac/XylS family of transcriptional regulators. Microbiology and Molecular Biology Reviews, 61(4), 393–410. Epub 1997/12/31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garred, O., van Deurs, B., & Sandvig, K. (1995). Furin-induced cleavage and activation of Shiga toxin. The Journal of Biological Chemistry, 270(18), 10817–10821. Epub 1995/05/05.

    Article  CAS  PubMed  Google Scholar 

  • Gillings, M. R. (2014). Integrons: Past, present, and future. Microbiology and Molecular Biology Reviews, 78(2), 257–277. Epub 2014/05/23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg, M. B., & Theriot, J. A. (1995). Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proceedings of the National Academy of Sciences of the United States of America, 92(14), 6572–6576. Epub 1995/07/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg, M. B., Barzu, O., Parsot, C., & Sansonetti, P. J. (1993). Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. Journal of Bacteriology, 175(8), 2189–2196. Epub 1993/04/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gophna, U., Ron, E. Z., & Graur, D. (2003). Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene, 312, 151–163. Epub 2003/08/12.

    Article  CAS  PubMed  Google Scholar 

  • Gouin, E., Gantelet, H., Egile, C., Lasa, I., Ohayon, H., Villiers, V., et al. (1999). A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. Journal of Cell Science, 112, 1697–1708. Epub 1999/05/13.

    CAS  PubMed  Google Scholar 

  • Gouin, E., Welch, M. D., & Cossart, P. (2005). Actin-based motility of intracellular pathogens. Current Opinion in Microbiology, 8(1), 35–45. Epub 2005/02/08.

    Article  CAS  PubMed  Google Scholar 

  • Gray, M. D., Lampel, K. A., Strockbine, N. A., Fernandez, R. E., Melton-Celsa, A. R., & Maurelli, A. T. (2014). Clinical isolates of Shiga toxin 1a-producing Shigella flexneri with an epidemiological link to recent travel to Hispaniola. Emerging Infectious Diseases, 20(10), 1669–1677. Epub 2014/10/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, S., Bastin, D. A., & Verma, N. K. (1999). Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology, 145, 1263–1273. Epub 1999/06/22.

    Article  CAS  PubMed  Google Scholar 

  • Guerrant, R. L., Schorling, J. B., McAuliffe, J. F., & de Souza, M. A. (1992). Diarrhea as a cause and an effect of malnutrition: Diarrhea prevents catch-up growth and malnutrition increases diarrhea frequency and duration. The American Journal of Tropical Medicine and Hygiene, 47(1 Pt 2), 28–35. Epub 1992/07/01.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S. K., Strockbine, N., Omondi, M., Hise, K., Fair, M. A., & Mintz, E. (2007). Emergence of Shiga toxin 1 genes within Shigella dysenteriae type 4 isolates from travelers returning from the island of Hispanola. The American Journal of Tropical Medicine and Hygiene, 76(6), 1163–1165. Epub 2007/06/09.

    CAS  PubMed  Google Scholar 

  • Gutierrez-Jimenez, J., Arciniega, I., & Navarro-Garcia, F. (2008). The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate. Microbial Pathogenesis, 45(2), 115–123. Epub 2008/06/10.

    Article  CAS  PubMed  Google Scholar 

  • Habib, N. F., & Jackson, M. P. (1992). Identification of a B subunit gene promoter in the Shiga toxin operon of Shigella dysenteriae 1. Journal of Bacteriology, 174(20), 6498–6507. Epub 1992/10/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hachani, A., Biskri, L., Rossi, G., Marty, A., Menard, R., Sansonetti, P., et al. (2008). IpgB1 and IpgB2, two homologous effectors secreted via the Mxi-Spa type III secretion apparatus, cooperate to mediate polarized cell invasion and inflammatory potential of Shigella flexenri. Microbes and Infection, 10(3), 260–268. Epub 2008/03/05.

    Article  CAS  PubMed  Google Scholar 

  • Hacker, J., Bender, L., Ott, M., Wingender, J., Lund, B., Marre, R., et al. (1990). Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microbial Pathogenesis, 8(3), 213–225. Epub 1990/03/01.

    Article  CAS  PubMed  Google Scholar 

  • Hacker, J., Blum-Oehler, G., Muhldorfer, I., & Tschape, H. (1997). Pathogenicity islands of virulent bacteria: Structure, function and impact on microbial evolution. Molecular Microbiology, 23(6), 1089–1097. Epub 1997/03/01.

    Article  CAS  PubMed  Google Scholar 

  • Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science, 279(5350), 509–514. Epub 1998/02/07.

    Article  CAS  PubMed  Google Scholar 

  • Harrington, A. T., Hearn, P. D., Picking, W. L., Barker, J. R., Wessel, A., & Picking, W. D. (2003). Structural characterization of the N terminus of IpaC from Shigella flexneri. Infection and Immunity, 71(3), 1255–1264. Epub 2003/02/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart, C. A., & Kariuki, S. (1998). Antimicrobial resistance in developing countries. BMJ, 317(7159), 647–650. Epub 1998/09/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hase, K., Kawano, K., Nochi, T., Pontes, G. S., Fukuda, S., Ebisawa, M., et al. (2009). Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature, 462(7270), 226–230. Epub 2009/11/13.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F., & Nataro, J. P. (1999). Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infection and Immunity, 67(11), 5587–5596. Epub 1999/10/26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillen, W., & Schollmeier, K. (1983). Nucleotide sequence of the Tn10 encoded tetracycline resistance gene. Nucleic Acids Research, 11(2), 525–539. Epub 1983/01/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirao, M., Sato, N., Kondo, T., Yonemura, S., Monden, M., Sasaki, T., et al. (1996). Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: Possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. The Journal of Cell Biology, 135(1), 37–51. Epub 1996/10/01.

    Article  CAS  PubMed  Google Scholar 

  • Hirose, K., Terajima, J., Izumiya, H., Tamura, K., Arakawa, E., Takai, N., et al. (2005). Antimicrobial susceptibility of Shigella sonnei isolates in Japan and molecular analysis of S. sonnei isolates with reduced susceptibility to fluoroquinolones. Antimicrobial Agents and Chemotherapy, 49(3), 1203–1205. Epub 2005/02/25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, B., Morado, D. R., Margolin, W., Rohde, J. R., Arizmendi, O., Picking, W. L., et al. (2015). Visualization of the type III secretion sorting platform of Shigella flexneri. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1047–1052. Epub 2015/01/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huan, P. T., Bastin, D. A., Whittle, B. L., Lindberg, A. A., & Verma, N. K. (1997). Molecular characterization of the genes involved in O-antigen modification, attachment, integration and excision in Shigella flexneri bacteriophage SfV. Gene, 195(2), 217–227. Epub 1997/08/22.

    Article  CAS  PubMed  Google Scholar 

  • Hyams, K. C., Bourgeois, A. L., Merrell, B. R., Rozmajzl, P., Escamilla, J., Thornton, S. A., et al. (1991). Diarrheal disease during operation desert shield. The New England Journal of Medicine, 325(20), 1423–1428. Epub 1991/11/14.

    Article  CAS  PubMed  Google Scholar 

  • Ingersoll, M. A., Moss, J. E., Weinrauch, Y., Fisher, P. E., Groisman, E. A., & Zychlinsky, A. (2003). The ShiA protein encoded by the Shigella flexneri SHI-2 pathogenicity island attenuates inflammation. Cellular Microbiology, 5(11), 797–807. Epub 2003/10/09.

    Article  CAS  PubMed  Google Scholar 

  • Jacewicz, M., Clausen, H., Nudelman, E., Donohue-Rolfe, A., & Keusch, G. T. (1986). Pathogenesis of Shigella diarrhea. XI. Isolation of a Shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. The Journal of Experimental Medicine, 163(6), 1391–1404. Epub 1986/06/01.

    Article  CAS  PubMed  Google Scholar 

  • Jakes, K., Zinder, N. D., & Boon, T. (1974). Purification and properties of colicin E3 immunity protein. The Journal of Biological Chemistry, 249(2), 438–444. Epub 1974/01/25.

    CAS  PubMed  Google Scholar 

  • Jehl, S. P., Doling, A. M., Giddings, K. S., Phalipon, A., Sansonetti, P. J., Goldberg, M. B., et al. (2011). Antigen-specific CD8(+) T cells fail to respond to Shigella flexneri. Infection and Immunity, 79(5), 2021–2030. Epub 2011/03/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, Q., Yuan, Z., Xu, J., Wang, Y., Shen, Y., Lu, W., et al. (2002). Genome sequence of Shigella flexneri 2a: Insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Research, 30(20), 4432–4441. Epub 2002/10/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, B. D., Ghori, N., & Falkow, S. (1994). Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. The Journal of Experimental Medicine, 180(1), 15–23. Epub 1994/07/01.

    Article  CAS  PubMed  Google Scholar 

  • Jones, B., Pascopella, L., & Falkow, S. (1995). Entry of microbes into the host: Using M cells to break the mucosal barrier. Current Opinion in Immunology, 7(4), 474–478. Epub 1995/08/01.

    Article  CAS  PubMed  Google Scholar 

  • Jouihri, N., Sory, M. P., Page, A. L., Gounon, P., Parsot, C., & Allaoui, A. (2003). MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri. Molecular Microbiology, 49(3), 755–767. Epub 2003/07/17.

    Article  CAS  PubMed  Google Scholar 

  • Jung, C., Hugot, J. P., & Barreau, F. (2010). Peyer’s patches: The immune sensors of the intestine. International Journal of Inflammation, 2010, 823710. Epub 2010/12/29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaper, J. B., & O’Brien, A. D. (2014). Overview and historical perspectives. Microbiology Spectrum, 2(2). doi:10.1128/microbiolspec.EHEC-0028-2014. Epub 2015/01/16.

  • Karaolis, D. K., Lan, R., & Reeves, P. R. (1994). Sequence variation in Shigella sonnei (Sonnei), a pathogenic clone of Escherichia coli, over four continents and 41 years. Journal of Clinical Microbiology, 32(3), 796–802. Epub 1994/03/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karmali, M. A., Steele, B. T., Petric, M., & Lim, C. (1983). Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet, 1(8325), 619–620. Epub 1983/03/19.

    Article  CAS  PubMed  Google Scholar 

  • Kayath, C. A., Hussey, S., El hajjami, N., Nagra, K., Philpott, D., & Allaoui, A. (2010). Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microbes and Infection, 12(12–13), 956–966. Epub 2010/07/06.

    Article  CAS  PubMed  Google Scholar 

  • Keusch, G. T., Grady, G. F., Mata, L. J., & McIver, J. (1972). The pathogenesis of Shigella diarrhea. I. Enterotoxin production by Shigella dysenteriae I. The Journal of Clinical Investigation, 51(5), 1212–1218. Epub 1972/05/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D. W., Lenzen, G., Page, A. L., Legrain, P., Sansonetti, P. J., & Parsot, C. (2005). The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14046–14051. Epub 2005/09/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M., Otsubo, R., Morikawa, H., Nishide, A., Takagi, K., Sasakawa, C., et al. (2014). Bacterial effectors and their functions in the ubiquitin-proteasome system: Insight from the modes of substrate recognition. Cell, 3(3), 848–864. Epub 2014/09/27.

    Article  CAS  Google Scholar 

  • Klink, B. U., Barden, S., Heidler, T. V., Borchers, C., Ladwein, M., Stradal, T. E., et al. (2010). Structure of Shigella IpgB2 in complex with human RhoA: Implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry. The Journal of Biological Chemistry, 285(22), 17197–17208. Epub 2010/04/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, T., Ogawa, M., Sanada, T., Mimuro, H., Kim, M., Ashida, H., et al. (2013). The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host & Microbe, 13(5), 570–583. Epub 2013/05/21.

    Article  CAS  Google Scholar 

  • Konradt, C., Frigimelica, E., Nothelfer, K., Puhar, A., Salgado-Pabon, W., di Bartolo, V., et al. (2011). The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host & Microbe, 9(4), 263–272. Epub 2011/04/20.

    Article  CAS  Google Scholar 

  • Kotloff, K. L., Winickoff, J. P., Ivanoff, B., Clemens, J. D., Swerdlow, D. L., Sansonetti, P. J., et al. (1999). Global burden of Shigella infections: Implications for vaccine development and implementation of control strategies. Bulletin of the World Health Organization, 77(8), 651–666. Epub 1999/10/12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lafont, F., Tran Van Nhieu, G., Hanada, K., Sansonetti, P., & van der Goot, F. G. (2002). Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. The EMBO Journal, 21(17), 4449–4457. Epub 2002/08/29.

    Google Scholar 

  • Lan, R., Stevenson, G., & Reeves, P. R. (2003). Comparison of two major forms of the Shigella virulence plasmid pINV: Positive selection is a major force driving the divergence. Infection and Immunity, 71(11), 6298–6306. Epub 2003/10/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, R., Alles, M. C., Donohoe, K., Martinez, M. B., & Reeves, P. R. (2004). Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infection and Immunity, 72(9), 5080–5088. Epub 2004/08/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Tejero, M., Kato, J., Wagner, S., Liu, X., & Galan, J. E. (2011). A sorting platform determines the order of protein secretion in bacterial type III systems. Science, 331(6021), 1188–1191. Epub 2011/02/05.

    Article  CAS  PubMed  Google Scholar 

  • Lawlor, K. M., Daskaleros, P. A., Robinson, R. E., & Payne, S. M. (1987). Virulence of iron transport mutants of Shigella flexneri and utilization of host iron compounds. Infection and Immunity, 55(3), 594–599. Epub 1987/03/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Gall, T., Mavris, M., Martino, M. C., Bernardini, M. L., Denamur, E., & Parsot, C. (2005). Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri. Microbiology, 151(Pt 3), 951–962. Epub 2005/03/11.

    Article  PubMed  CAS  Google Scholar 

  • Lerat, E., & Ochman, H. (2004). Psi-Phi: Exploring the outer limits of bacterial pseudogenes. Genome Research, 14(11), 2273–2278. Epub 2004/10/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, M. M., Kotloff, K. L., Barry, E. M., Pasetti, M. F., & Sztein, M. B. (2007). Clinical trials of Shigella vaccines: Two steps forward and one step back on a long, hard road. Nature Reviews. Microbiology, 5(7), 540–553. Epub 2007/06/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Xu, H., Zhou, Y., Zhang, J., Long, C., Li, S., et al. (2007). The phosphothreonine lyase activity of a bacterial type III effector family. Science, 315(5814), 1000–1003. Epub 2007/02/17.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R., & Ochman, H. (2007). Origins of flagellar gene operons and secondary flagellar systems. Journal of Bacteriology, 189(19), 7098–7104. Epub 2007/07/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowell, G. H., MacDermott, R. P., Summers, P. L., Reeder, A. A., Bertovich, M. J., & Formal, S. B. (1980). Antibody-dependent cell-mediated antibacterial activity: K lymphocytes, monocytes, and granulocytes are effective against Shigella. Journal of Immunology, 125(6), 2778–2784. Epub 1980/12/01.

    CAS  Google Scholar 

  • Luck, S. N., Turner, S. A., Rajakumar, K., Sakellaris, H., & Adler, B. (2001). Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infection and Immunity, 69(10), 6012–6021. Epub 2001/09/13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R., & Mahajan, A. (2013). Microfold (M) cells: Important immunosurveillance posts in the intestinal epithelium. Mucosal Immunology, 6(4), 666–677. Epub 2013/05/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marra, A., & Isberg, R. R. (1997). Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer’s patch intestinal epithelium. Infection and Immunity, 65(8), 3412–3421. Epub 1997/08/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marteyn, B., West, N. P., Browning, D. F., Cole, J. A., Shaw, J. G., Palm, F., et al. (2010). Modulation of Shigella virulence in response to available oxygen in vivo. Nature, 465(7296), 355–358. Epub 2010/05/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti, E., Variatza, E., & Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22(1), 36–41. Epub 2013/12/03.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Argudo, I., & Blocker, A. J. (2010). The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Molecular Microbiology, 78(6), 1365–1378. Epub 2010/12/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathan, M. M., & Mathan, V. I. (1991). Morphology of rectal mucosa of patients with shigellosis. Reviews of Infectious Diseases, 13(Suppl 4), S314–S318. Epub 1991/03/01.

    Article  PubMed  Google Scholar 

  • Maurelli, A. T., & Sansonetti, P. J. (1988). Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. Proceedings of the National Academy of Sciences of the United States of America, 85(8), 2820–2824. Epub 1988/04/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurelli, A. T., Blackmon, B., & Curtiss 3rd, R. (1984). Loss of pigmentation in Shigella flexneri 2a is correlated with loss of virulence and virulence-associated plasmid. Infection and Immunity, 43(1), 397–401. Epub 1984/01/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maurelli, A. T., Baudry, B., d’Hauteville, H., Hale, T. L., & Sansonetti, P. J. (1985). Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella flexneri. Infection and Immunity, 49(1), 164–171. Epub 1985/07/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maurelli, A. T., Fernandez, R. E., Bloch, C. A., Rode, C. K., & Fasano, A. (1998). “Black holes” and bacterial pathogenicity: A large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3943–3948. Epub 1998/05/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavris, M., Manning, P. A., & Morona, R. (1997). Mechanism of bacteriophage SfII-mediated serotype conversion in Shigella flexneri. Molecular Microbiology, 26(5), 939–950. Epub 1998/01/13.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, B. A., Fernandez, M. I., Siber, A. M., & Maurelli, A. T. (1999). Inhibition of Shigella flexneri-induced transepithelial migration of polymorphonuclear leucocytes by cadaverine. Cellular Microbiology, 1(2), 143–155. Epub 2001/02/24.

    Article  CAS  PubMed  Google Scholar 

  • McDonough, M. A., & Butterton, J. R. (1999). Spontaneous tandem amplification and deletion of the shiga toxin operon in Shigella dysenteriae 1. Molecular Microbiology, 34(5), 1058–1069. Epub 1999/12/14.

    Article  CAS  PubMed  Google Scholar 

  • Menard, R., Sansonetti, P. J., & Parsot, C. (1993). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. Journal of Bacteriology, 175(18), 5899–5906. Epub 1993/09/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers, K. E., & Kaplan, B. S. (2000). Many cell types are Shiga toxin targets. Kidney International, 57(6), 2650–2651. Epub 2000/06/09.

    Article  CAS  PubMed  Google Scholar 

  • Mitobe, J., Morita-Ishihara, T., Ishihama, A., & Watanabe, H. (2009). Involvement of RNA-binding protein Hfq in the osmotic-response regulation of invE gene expression in Shigella sonnei. BMC Microbiology, 9, 110. Epub 2009/05/30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monk, J. M., Charusanti, P., Aziz, R. K., Lerman, J. A., Premyodhin, N., Orth, J. D., et al. (2013). Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20338–20343. Epub 2013/11/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno, A. C., Ferreira, L. G., & Martinez, M. B. (2009). Enteroinvasive Escherichia coli vs. Shigella flexneri: How different patterns of gene expression affect virulence. FEMS Microbiology Letters, 301(2), 156–163. Epub 2009/11/06.

    Article  CAS  PubMed  Google Scholar 

  • Moss, J. E., Cardozo, T. J., Zychlinsky, A., & Groisman, E. A. (1999). The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Molecular Microbiology, 33(1), 74–83. Epub 1999/07/20.

    Article  CAS  PubMed  Google Scholar 

  • Mounier, J., Vasselon, T., Hellio, R., Lesourd, M., & Sansonetti, P. J. (1992). Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infection and Immunity, 60(1), 237–248. Epub 1992/01/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mrsny, R. J., Gewirtz, A. T., Siccardi, D., Savidge, T., Hurley, B. P., Madara, J. L., et al. (2004). Identification of hepoxilin A3 in inflammatory events: A required role in neutrophil migration across intestinal epithelia. Proceedings of the National Academy of Sciences of the United States of America, 101(19), 7421–7426. Epub 2004/05/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhldorfer, I., Hacker, J., Keusch, G. T., Acheson, D. W., Tschape, H., Kane, A. V., et al. (1996). Regulation of the Shiga-like toxin II operon in Escherichia coli. Infection and Immunity, 64(2), 495–502. Epub 1996/02/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mumy, K. L., Bien, J. D., Pazos, M. A., Gronert, K., Hurley, B. P., & McCormick, B. A. (2008). Distinct isoforms of phospholipase A2 mediate the ability of Salmonella enterica serotype typhimurium and Shigella flexneri to induce the transepithelial migration of neutrophils. Infection and Immunity, 76(8), 3614–3627. Epub 2008/05/29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muniesa, M., Blanco, J. E., De Simon, M., Serra-Moreno, R., Blanch, A. R., & Jofre, J. (2004). Diversity of stx2 converting bacteriophages induced from Shiga-toxin-producing Escherichia coli strains isolated from cattle. Microbiology, 150(Pt 9), 2959–2971. Epub 2004/09/07.

    Article  CAS  PubMed  Google Scholar 

  • Nakata, N., Tobe, T., Fukuda, I., Suzuki, T., Komatsu, K., Yoshikawa, M., et al. (1993). The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: The relationship between the ompT and kcpA loci. Molecular Microbiology, 9(3), 459–468. Epub 1993/08/01.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, S., & Watanabe, H. (1995). Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene. Journal of Bacteriology, 177(17), 5062–5069. Epub 1995/09/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassif, X., Mazert, M. C., Mounier, J., & Sansonetti, P. J. (1987). Evaluation with an iuc::Tn10 mutant of the role of aerobactin production in the virulence of Shigella flexneri. Infection and Immunity, 55(9), 1963–1969. Epub 1987/09/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton, H. J., Pearson, J. S., Badea, L., Kelly, M., Lucas, M., Holloway, G., et al. (2010). The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65. PLoS Pathogens, 6(5), e1000898. Epub 2010/05/21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nhieu, G. T., Enninga, J., Sansonetti, P., & Grompone, G. (2005). Tyrosine kinase signaling and type III effectors orchestrating Shigella invasion. Current Opinion in Microbiology, 8(1), 16–20. Epub 2005/02/08.

    Article  PubMed  CAS  Google Scholar 

  • Nie, H., Yang, F., Zhang, X., Yang, J., Chen, L., Wang, J., et al. (2006). Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a. BMC Genomics, 7, 173. Epub 2006/07/11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niebuhr, K., Jouihri, N., Allaoui, A., Gounon, P., Sansonetti, P. J., & Parsot, C. (2000). IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Molecular Microbiology, 38(1), 8–19. Epub 2000/10/13.

    Article  CAS  PubMed  Google Scholar 

  • Niebuhr, K., Giuriato, S., Pedron, T., Philpott, D. J., Gaits, F., Sable, J., et al. (2002). Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. The EMBO Journal, 21(19), 5069–5078. Epub 2002/10/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nothelfer, K., Arena, E. T., Pinaud, L., Neunlist, M., Mozeleski, B., Belotserkovsky, I., et al. (2014). B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. The Journal of Experimental Medicine, 211(6), 1215–1229. Epub 2014/05/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien, A. O., Lively, T. A., Chen, M. E., Rothman, S. W., & Formal, S. B. (1983). Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (SHIGA) like cytotoxin. Lancet, 1(8326 Pt 1), 702. Epub 1983/03/26.

    Article  PubMed  Google Scholar 

  • O’Loughlin, E. V., & Robins-Browne, R. M. (2001). Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes and Infection, 3(6), 493–507. Epub 2001/05/30.

    Article  PubMed  Google Scholar 

  • Ogawa, M., Suzuki, T., Tatsuno, I., Abe, H., & Sasakawa, C. (2003). IcsB, secreted via the type III secretion system, is chaperoned by IpgA and required at the post-invasion stage of Shigella pathogenicity. Molecular Microbiology, 48(4), 913–931. Epub 2003/05/20.

    Article  CAS  PubMed  Google Scholar 

  • Ohya, K., Handa, Y., Ogawa, M., Suzuki, M., & Sasakawa, C. (2005). IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. The Journal of Biological Chemistry, 280(25), 24022–24034. Epub 2005/04/26.

    Article  CAS  PubMed  Google Scholar 

  • Osiecki, J. C., Barker, J., Picking, W. L., Serfis, A. B., Berring, E., Shah, S., et al. (2001). IpaC from Shigella and SipC from Salmonella possess similar biochemical properties but are functionally distinct. Molecular Microbiology, 42(2), 469–481. Epub 2001/11/13.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco, A. R., & Sperandio, V. (2012). Shiga toxin in enterohemorrhagic E.coli: Regulation and novel anti-virulence strategies. Frontiers in Cellular and Infection Microbiology, 2, 81. Epub 2012/08/25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paetzold, S., Lourido, S., Raupach, B., & Zychlinsky, A. (2007). Shigella flexneri phagosomal escape is independent of invasion. Infection and Immunity, 75(10), 4826–4830. Epub 2007/08/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page, A. L., Ohayon, H., Sansonetti, P. J., & Parsot, C. (1999). The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri. Cellular Microbiology, 1(2), 183–193. Epub 2001/02/24.

    Article  CAS  PubMed  Google Scholar 

  • Page, A. L., Fromont-Racine, M., Sansonetti, P., Legrain, P., & Parsot, C. (2001). Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri. Molecular Microbiology, 42(4), 1133–1145. Epub 2001/12/12.

    Article  CAS  PubMed  Google Scholar 

  • Page, A. L., Sansonetti, P., & Parsot, C. (2002). Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Molecular Microbiology, 43(6), 1533–1542. Epub 2002/04/16.

    Article  CAS  PubMed  Google Scholar 

  • Pajunen, M., Kiljunen, S., & Skurnik, M. (2000). Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. Journal of Bacteriology, 182(18), 5114–5120. Epub 2000/08/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallen, M. J., Bailey, C. M., & Beatson, S. A. (2006). Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Protein Science, 15(4), 935–941. Epub 2006/03/09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H., Valencia-Gallardo, C., Sharff, A., Tran Van Nhieu, G., & Izard, T. (2011). Novel vinculin binding site of the IpaA invasin of Shigella. The Journal of Biological Chemistry, 286(26), 23214–23221. Epub 2011/04/29.

    Google Scholar 

  • Parsot, C., Ageron, E., Penno, C., Mavris, M., Jamoussi, K., d’Hauteville, H., et al. (2005). A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Molecular Microbiology, 56(6), 1627–1635. Epub 2005/05/27.

    Article  CAS  PubMed  Google Scholar 

  • Pazhani, G. P., Sarkar, B., Ramamurthy, T., Bhattacharya, S. K., Takeda, Y., & Niyogi, S. K. (2004). Clonal multidrug-resistant Shigella dysenteriae type 1 strains associated with epidemic and sporadic dysenteries in eastern India. Antimicrobial Agents and Chemotherapy, 48(2), 681–684. Epub 2004/01/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peirano, G., Agerso, Y., Aarestrup, F. M., & dos Prazeres Rodrigues, D. (2005). Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil. The Journal of Antimicrobial Chemotherapy, 55(3), 301–305. Epub 2005/02/01.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J., Yang, J., & Jin, Q. (2009). The molecular evolutionary history of Shigella spp. and enteroinvasive Escherichia coli. Infection, Genetics and Evolution, 9(1), 147–152. Epub 2008/11/13.

    Article  CAS  PubMed  Google Scholar 

  • Perdomo, J. J., Gounon, P., & Sansonetti, P. J. (1994). Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella flexneri. The Journal of Clinical Investigation, 93(2), 633–643. Epub 1994/02/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perreten, V., & Boerlin, P. (2003). A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrobial Agents and Chemotherapy, 47(3), 1169–1172. Epub 2003/02/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phalipon, A., & Sansonetti, P. J. (2007). Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: A tool box for survival? Immunology and Cell Biology, 85(2), 119–129. Epub 2007/01/11.

    Article  CAS  PubMed  Google Scholar 

  • Phalipon, A., Kaufmann, M., Michetti, P., Cavaillon, J. M., Huerre, M., Sansonetti, P., et al. (1995). Monoclonal immunoglobulin a antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. The Journal of Experimental Medicine, 182(3), 769–778. Epub 1995/09/01.

    Article  CAS  PubMed  Google Scholar 

  • Pickering, L. K., Evans, D. G., DuPont, H. L., Vollet 3rd, J. J., & Evans Jr., D. J. (1981). Diarrhea caused by Shigella, rotavirus, and Giardia in day-care centers: Prospective study. The Journal of Pediatrics, 99(1), 51–56. Epub 1981/07/01.

    Article  CAS  PubMed  Google Scholar 

  • Plunkett 3rd, G., Rose, D. J., Durfee, T. J., & Blattner, F. R. (1999). Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. Journal of Bacteriology, 181(6), 1767–1778. Epub 1999/03/12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter, M. E., & Dorman, C. J. (1997). Positive regulation of Shigella flexneri virulence genes by integration host factor. Journal of Bacteriology, 179(21), 6537–6550. Epub 1997/11/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosseda, G., Fradiani, P. A., Di Lorenzo, M., Falconi, M., Micheli, G., Casalino, M., et al. (1998). A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli. Research in Microbiology, 149(1), 15–25. Epub 1998/10/10.

    Article  CAS  PubMed  Google Scholar 

  • Prunier, A. L., Schuch, R., Fernandez, R. E., Mumy, K. L., Kohler, H., McCormick, B. A., et al. (2007a). nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology, 153(Pt 7), 2363–2372. Epub 2007/06/30.

    Article  CAS  PubMed  Google Scholar 

  • Prunier, A. L., Schuch, R., Fernandez, R. E., & Maurelli, A. T. (2007b). Genetic structure of the nadA and nadB antivirulence loci in Shigella spp. Journal of Bacteriology, 189(17), 6482–6486. Epub 2007/06/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pupo, G. M., Karaolis, D. K., Lan, R., & Reeves, P. R. (1997). Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infection and Immunity, 65(7), 2685–2692. Epub 1997/07/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pupo, G. M., Lan, R., & Reeves, P. R. (2000). Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10567–10572. Epub 2000/08/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purdy, G. E., & Payne, S. M. (2001). The SHI-3 iron transport island of Shigella boydii 0-1392 carries the genes for aerobactin synthesis and transport. Journal of Bacteriology, 183(14), 4176–4182. Epub 2001/06/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purdy, G. E., Fisher, C. R., & Payne, S. M. (2007). IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. Journal of Bacteriology, 189(15), 5566–5573. Epub 2007/05/29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajakumar, K., Sasakawa, C., & Adler, B. (1997). Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin a protease-like family of proteins. Infection and Immunity, 65(11), 4606–4614. Epub 1997/11/14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasko, D. A., Webster, D. R., Sahl, J. W., Bashir, A., Boisen, N., Scheutz, F., et al. (2011). Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. The New England Journal of Medicine, 365(8), 709–717. Epub 2011/07/29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond, B., Young, J. C., Pallett, M., Endres, R. G., Clements, A., & Frankel, G. (2013). Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends in Microbiology, 21(8), 430–441. Epub 2013/07/23.

    Article  CAS  PubMed  Google Scholar 

  • Reiterer, V., Grossniklaus, L., Tschon, T., Kasper, C. A., Sorg, I., & Arrieumerlou, C. (2011). Shigella flexneri type III secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection. Cellular Signalling, 23(7), 1188–1196. Epub 2011/03/16.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, H. J. (1973). Iron-binding catechols and virulence in Escherichia coli. Infection and Immunity, 7(3), 445–456. Epub 1973/03/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J., & Parsot, C. (2007). Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host & Microbe, 1(1), 77–83. Epub 2007/11/17.

    Article  CAS  Google Scholar 

  • Ruetz, T. J., Lin, A. E., & Guttman, J. A. (2012). Shigella flexneri utilize the spectrin cytoskeleton during invasion and comet tail generation. BMC Microbiology, 12, 36. Epub 2012/03/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Sablet, T., Bertin, Y., Vareille, M., Girardeau, J. P., Garrivier, A., Gobert, A. P., et al. (2008). Differential expression of stx2 variants in Shiga toxin-producing Escherichia coli belonging to seropathotypes A and C. Microbiology, 154(Pt 1), 176–186. Epub 2008/01/05.

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Pabón, W., Konradt, C., Sansonetti, P. J., & Phalipon, A. (2014). New insights into the crosstalk between Shigella and T lymphocytes. Trends in Microbiology, 22(4), 192–198. Epub 2014/03/13.

    Article  PubMed  CAS  Google Scholar 

  • Samudrala, R., Heffron, F., & McDermott, J. E. (2009). Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathogens, 5(4), e1000375. Epub 2009/04/25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanada, T., Kim, M., Mimuro, H., Suzuki, M., Ogawa, M., Oyama, A., et al. (2012). The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature, 483(7391), 623–626. Epub 2012/03/13.

    Article  CAS  PubMed  Google Scholar 

  • Sansonetti, P. J., & Phalipon, A. (1999). M cells as ports of entry for enteroinvasive pathogens: Mechanisms of interaction, consequences for the disease process. Seminars in Immunology, 11(3), 193–203. Epub 1999/06/26.

    Article  CAS  PubMed  Google Scholar 

  • Sansonetti, P. J., Kopecko, D. J., & Formal, S. B. (1982). Involvement of a plasmid in the invasive ability of Shigella flexneri. Infection and Immunity, 35(3), 852–860. Epub 1982/03/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti, P. J., Arondel, J., Cantey, J. R., Prevost, M. C., & Huerre, M. (1996). Infection of rabbit Peyer’s patches by Shigella flexneri: Effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infection and Immunity, 64(7), 2752–2764. Epub 1996/07/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansonetti, P. J., Phalipon, A., Arondel, J., Thirumalai, K., Banerjee, S., Akira, S., et al. (2000). Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity, 12(5), 581–590. Epub 2000/06/08.

    Article  CAS  PubMed  Google Scholar 

  • Sasakawa, C., Kamata, K., Sakai, T., Makino, S., Yamada, M., Okada, N., et al. (1988). Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a. Journal of Bacteriology, 170(6), 2480–2484. Epub 1988/06/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States – major pathogens. Emerging Infectious Diseases, 17(1), 7–15. Epub 2011/01/05.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt, H., & Hensel, M. (2004). Pathogenicity islands in bacterial pathogenesis. Clinical Microbiology Reviews, 17(1), 14–56. Epub 2004/01/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt, M. P., & Payne, S. M. (1988). Genetics and regulation of enterobactin genes in Shigella flexneri. Journal of Bacteriology, 170(12), 5579–5587. Epub 1988/12/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder, G. N., & Hilbi, H. (2008). Molecular pathogenesis of Shigella spp.: Controlling host cell signaling, invasion, and death by type III secretion. Clinical Microbiology Reviews, 21(1), 134–156. Epub 2008/01/19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuch, R., & Maurelli, A. T. (2001a). MxiM and MxiJ, base elements of the Mxi-Spa type III secretion system of Shigella, interact with and stabilize the MxiD secretin in the cell envelope. Journal of Bacteriology, 183(24), 6991–6998. Epub 2001/11/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuch, R., & Maurelli, A. T. (2001b). Spa33, a cell surface-associated subunit of the Mxi-Spa type III secretory pathway of Shigella flexneri, regulates Ipa protein traffic. Infection and Immunity, 69(4), 2180–2189. Epub 2001/03/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuch, R., Sandlin, R. C., & Maurelli, A. T. (1999). A system for identifying post-invasion functions of invasion genes: Requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Molecular Microbiology, 34(4), 675–689. Epub 1999/11/24.

    Article  CAS  PubMed  Google Scholar 

  • Scribano, D., Petrucca, A., Pompili, M., Ambrosi, C., Bruni, E., Zagaglia, C., et al. (2014). Polar localization of PhoN2, a periplasmic virulence-associated factor of Shigella flexneri, is required for proper IcsA exposition at the old bacterial pole. PLoS One, 9(2), e90230. Epub 2014/03/04.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senerovic, L., Tsunoda, S. P., Goosmann, C., Brinkmann, V., Zychlinsky, A., Meissner, F., et al. (2012). Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death & Disease, 3, e384. Epub 2012/09/07.

    Article  CAS  Google Scholar 

  • Silva, R. M., Toledo, M. R., & Trabulsi, L. R. (1980). Biochemical and cultural characteristics of invasive Escherichia coli. Journal of Clinical Microbiology, 11(5), 441–444. Epub 1980/05/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons, D. A., & Romanowska, E. (1987). Structure and biology of Shigella flexneri O antigens. Journal of Medical Microbiology, 23(4), 289–302. Epub 1987/06/01.

    Article  CAS  PubMed  Google Scholar 

  • Singer, A. U., Rohde, J. R., Lam, R., Skarina, T., Kagan, O., Dileo, R., et al. (2008). Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nature Structural & Molecular Biology, 15(12), 1293–1301. Epub 2008/11/11.

    Article  CAS  Google Scholar 

  • Sperandio, B., Regnault, B., Guo, J., Zhang, Z., Stanley Jr., S. L., Sansonetti, P. J., et al. (2008). Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. The Journal of Experimental Medicine, 205(5), 1121–1132. Epub 2008/04/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staudenmaier, H., Van Hove, B., Yaraghi, Z., & Braun, V. (1989). Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli. Journal of Bacteriology, 171(5), 2626–2633. Epub 1989/05/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stebbins, C. E., & Galan, J. E. (2001). Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature, 414(6859), 77–81. Epub 2001/11/02.

    Article  CAS  PubMed  Google Scholar 

  • Steinhauer, J., Agha, R., Pham, T., Varga, A. W., & Goldberg, M. B. (1999). The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Molecular Microbiology, 32(2), 367–377. Epub 1999/05/07.

    Article  CAS  PubMed  Google Scholar 

  • Strauch, E., Lurz, R., & Beutin, L. (2001). Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infection and Immunity, 69(12), 7588–7595. Epub 2001/11/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, T., Mimuro, H., Suetsugu, S., Miki, H., Takenawa, T., & Sasakawa, C. (2002). Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cellular Microbiology, 4(4), 223–233. Epub 2002/04/16.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, S., Mimuro, H., Kim, M., Ogawa, M., Ashida, H., Toyotome, T., et al. (2014). Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proceedings of the National Academy of Sciences of the United States of America, 111(40), E4254–E4263. Epub 2014/09/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svinarich, D. M., & Palchaudhuri, S. (1992). Regulation of the SLT-1A toxin operon by a ferric uptake regulatory protein in toxinogenic strains of Shigella dysenteriae type 1. Journal of Diarrhoeal Diseases Research, 10(3), 139–145. Epub 1992/09/01.

    CAS  PubMed  Google Scholar 

  • Swenson, D. L., Bukanov, N. O., Berg, D. E., & Welch, R. A. (1996). Two pathogenicity islands in uropathogenic Escherichia coli J96: Cosmid cloning and sample sequencing. Infection and Immunity, 64(9), 3736–3743. Epub 1996/09/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajbakhsh, M., Garcia Migura, L., Rahbar, M., Svendsen, C. A., Mohammadzadeh, M., Zali, M. R., et al. (2012). Antimicrobial-resistant Shigella infections from Iran: An overlooked problem? The Journal of Antimicrobial Chemotherapy, 67(5), 1128–1133. Epub 2012/02/22.

    Article  CAS  PubMed  Google Scholar 

  • Tamano, K., Katayama, E., Toyotome, T., & Sasakawa, C. (2002). Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. Journal of Bacteriology, 184(5), 1244–1252. Epub 2002/02/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavio, M. M., Vila, J., Ruiz, J., Ruiz, J., Martin-Sanchez, A. M., & Jimenez de Anta, M. T. (1999). Mechanisms involved in the development of resistance to fluoroquinolones in Escherichia coli isolates. The Journal of Antimicrobial Chemotherapy, 44(6), 735–742. Epub 1999/12/11.

    Article  CAS  PubMed  Google Scholar 

  • Thirumalai, K., Kim, K. S., & Zychlinsky, A. (1997). IpaB, a Shigella flexneri invasin, colocalizes with interleukin-1 beta-converting enzyme in the cytoplasm of macrophages. Infection and Immunity, 65(2), 787–793. Epub 1997/02/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tobe, T., Yoshikawa, M., Mizuno, T., & Sasakawa, C. (1993). Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: Activation by virF and repression by H-NS. Journal of Bacteriology, 175(19), 6142–6149. Epub 1993/10/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobe, T., Yoshikawa, M., & Sasakawa, C. (1995). Thermoregulation of virB transcription in Shigella flexneri by sensing of changes in local DNA superhelicity. Journal of Bacteriology, 177(4), 1094–1097. Epub 1995/02/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toro, C. S., Farfan, M., Contreras, I., Flores, O., Navarro, N., Mora, G. C., et al. (2005). Genetic analysis of antibiotic-resistance determinants in multidrug-resistant Shigella strains isolated from Chilean children. Epidemiology and Infection, 133(1), 81–86. Epub 2005/02/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres Filho, I. P., Leunig, M., Yuan, F., Intaglietta, M., & Jain, R. K. (1994). Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2081–2085. Epub 1994/03/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran Van Nhieu, G., Ben-Ze’ev, A., & Sansonetti, P. J. (1997). Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. The EMBO Journal, 16(10), 2717–2729. Epub 1997/05/15.

    Google Scholar 

  • Tran Van Nhieu, G., Bourdet-Sicard, R., Dumenil, G., Blocker, A., & Sansonetti, P. J. (2000). Bacterial signals and cell responses during Shigella entry into epithelial cells. Cellular Microbiology, 2(3), 187–193. Epub 2001/02/24.

    Google Scholar 

  • Trofa, A. F., Ueno-Olsen, H., Oiwa, R., & Yoshikawa, M. (1999). Dr. Kiyoshi Shiga: Discoverer of the dysentery bacillus. Clinical Infectious Diseases, 29(5), 1303–1306. Epub 1999/10/19.

    Article  CAS  PubMed  Google Scholar 

  • Ud-Din, A. I., Wahid, S. U., Latif, H. A., Shahnaij, M., Akter, M., Azmi, I. J., et al. (2013). Changing trends in the prevalence of Shigella species: Emergence of multi-drug resistant Shigella sonnei biotype g in Bangladesh. PLoS One, 8(12), e82601. Epub 2013/12/25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Goot, F. G., Tran van Nhieu, G., Allaoui, A., Sansonetti, P., & Lafont, F. (2004). Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. The Journal of Biological Chemistry, 279(46), 47792–47798. Epub 2004/09/15.

    Article  PubMed  CAS  Google Scholar 

  • Van Gijsegem, F., Gough, C., Zischek, C., Niqueux, E., Arlat, M., Genin, S., et al. (1995). The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Molecular Microbiology, 15(6), 1095–1114. Epub 1995/03/01.

    Article  PubMed  Google Scholar 

  • Van Tiel-Menkveld, G. J., Mentjox-Vervuurt, J. M., Oudega, B., & de Graaf, F. K. (1982). Siderophore production by Enterobacter cloacae and a common receptor protein for the uptake of aerobactin and cloacin DF13. Journal of Bacteriology, 150(2), 490–497. Epub 1982/05/01.

    PubMed  PubMed Central  Google Scholar 

  • Veenendaal, A. K., Hodgkinson, J. L., Schwarzer, L., Stabat, D., Zenk, S. F., & Blocker, A. J. (2007). The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Molecular Microbiology, 63(6), 1719–1730. Epub 2007/03/21.

    Article  CAS  PubMed  Google Scholar 

  • Verma, N. K., Verma, D. J., Huan, P. T., & Lindberg, A. A. (1993). Cloning and sequencing of the glucosyl transferase-encoding gene from converting bacteriophage X (SFX) of Shigella flexneri. Gene, 129(1), 99–101. Epub 1993/07/15.

    Article  CAS  PubMed  Google Scholar 

  • Vokes, S. A., Reeves, S. A., Torres, A. G., & Payne, S. M. (1999). The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Molecular Microbiology, 33(1), 63–73. Epub 1999/07/20.

    Article  CAS  PubMed  Google Scholar 

  • Wagegg, W., & Braun, V. (1981). Ferric citrate transport in Escherichia coli requires outer membrane receptor protein FecA. Journal of Bacteriology, 145(1), 156–163. Epub 1981/01/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, H., Arakawa, E., Ito, K., Kato, J., & Nakamura, A. (1990). Genetic analysis of an invasion region by use of a Tn3-lac transposon and identification of a second positive regulator gene, invE, for cell invasion of Shigella sonnei: Significant homology of InvE with ParB of plasmid P1. Journal of Bacteriology, 172(2), 619–629. Epub 1990/02/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watarai, M., Funato, S., & Sasakawa, C. (1996). Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. The Journal of Experimental Medicine, 183(3), 991–999. Epub 1996/03/01.

    Article  CAS  PubMed  Google Scholar 

  • Weaver, C. A., Redborg, A. H., & Konisky, J. (1981). Plasmid-determined immunity of Escherichia coli K-12 to colicin Ia Is mediated by a plasmid-encoded membrane protein. Journal of Bacteriology, 148(3), 817–828. Epub 1981/12/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, J., Goldberg, M. B., Burland, V., Venkatesan, M. M., Deng, W., Fournier, G., et al. (2003). Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infection and Immunity, 71(5), 2775–2786. Epub 2003/04/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg, E. D. (1978). Iron and infection. Microbiological Reviews, 42(1), 45–66. Epub 1978/03/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinrauch, Y., Drujan, D., Shapiro, S. D., Weiss, J., & Zychlinsky, A. (2002). Neutrophil elastase targets virulence factors of enterobacteria. Nature, 417(6884), 91–94. Epub 2002/05/23.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. (2005). Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1. Geneva: WHO Press, http://whqlibdoc.who.int/publications/2005/9241592330.pdf; [cited 2 Mar 2015]; Available from: http://whqlibdoc.who.int/publications/2005/9241592330.pdf

  • Yang, F., Yang, J., Zhang, X., Chen, L., Jiang, Y., Yan, Y., et al. (2005). Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Research, 33(19), 6445–6458. Epub 2005/11/09.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Nie, H., Chen, L., Zhang, X., Yang, F., Xu, X., et al. (2007). Revisiting the molecular evolutionary history of Shigella spp. Journal of Molecular Evolution, 64(1), 71–79. Epub 2006/12/13.

    Article  CAS  PubMed  Google Scholar 

  • Yi, C. R., Allen, J. E., Russo, B., Lee, S. Y., Heindl, J. E., Baxt, L. A., et al. (2014). Systematic analysis of bacterial effector-postsynaptic density 95/disc large/zonula occludens-1 (PDZ) domain interactions demonstrates Shigella OspE protein promotes protein kinase C activation via PDLIM proteins. The Journal of Biological Chemistry, 289(43), 30101–30113. Epub 2014/08/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaghloul, L., Tang, C., Chin, H. Y., Bek, E. J., Lan, R., & Tanaka, M. M. (2007). The distribution of insertion sequences in the genome of Shigella flexneri strain 2457T. FEMS Microbiology Letters, 277(2), 197–204. Epub 2007/11/23.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi, M. B., & Estrada-Garcia, T. (2014). Shigella: A highly virulent and elusive pathogen. Current Tropical Medicine Reports, 1(2), 81–87. Epub 2014/08/12.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, N., Lan, R., Sun, Q., Wang, J., Wang, Y., Zhang, J., et al. (2014). Genomic portrait of the evolution and epidemic spread of a recently emerged multidrug-resistant Shigella flexneri clone in China. Journal of Clinical Microbiology, 52(4), 1119–1126. Epub 2014/01/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Li, H., Hu, L., Wang, J., Zhou, Y., Pang, Z., et al. (2008). Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nature Structural & Molecular Biology, 15(12), 1302–1308. Epub 2008/11/11.

    Article  CAS  Google Scholar 

  • Zychlinsky, A., Prevost, M. C., & Sansonetti, P. J. (1992). Shigella flexneri induces apoptosis in infected macrophages. Nature, 358(6382), 167–169. Epub 1992/07/09.

    Article  CAS  PubMed  Google Scholar 

  • Zychlinsky, A., Perdomo, J. J., & Sansonetti, P. J. (1994a). Molecular and cellular mechanisms of tissue invasion by Shigella flexneri. Annals of the New York Academy of Sciences, 730, 197–208. Epub 1994/08/15.

    Article  CAS  PubMed  Google Scholar 

  • Zychlinsky, A., Kenny, B., Menard, R., Prevost, M. C., Holland, I. B., & Sansonetti, P. J. (1994b). IpaB mediates macrophage apoptosis induced by Shigella flexneri. Molecular Microbiology, 11(4), 619–627. Epub 1994/02/01.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Lampel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bliven, K.A., Lampel, K.A. (2017). Shigella: Virulence Factors and Pathogenicity. In: Gurtler, J., Doyle, M., Kornacki, J. (eds) Foodborne Pathogens. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-319-56836-2_7

Download citation

Publish with us

Policies and ethics