Skip to main content

Pathophysiological Insights of Hypertension in Patients with Chronic Kidney Disease

  • Chapter
  • First Online:
Resistant Hypertension in Chronic Kidney Disease

Abstract

Hypertension is a multi-organ disease, and kidneys play a central role in the development of hypertension, although the kidneys are also being a target organ for hypertension-induced damage. The association between hypertension and chronic kidney disease (CKD) is well known. The prevalence of hypertension increases and control of hypertension becomes more difficult as kidney functions decline. Understanding of the pathophysiology of hypertension is critical for the management of hypertension in CKD. However, there are large gaps in our understanding of pathogenesis and treatment of CKD-related hypertension. Basically, high blood pressure is caused by an increase in cardiac output and/or increase of total peripheral resistance. Both can be deteriorated by a variety of different mechanisms in CKD. Sodium retention and extracellular volume expansion are important, but not the only factors contributing to hypertension seen in CKD. Humoral factors such as renin-angiotensin-aldosterone system, endothelin, and non-humoral factors such as mineral bone disorders may also play a major role in the pathogenesis of hypertension in CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US Renal Data System USRDS 2010 Annual Data Report. Atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2010.

    Google Scholar 

  2. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S112–9.

    Article  CAS  PubMed  Google Scholar 

  3. USRD 2009. Atlas of Chronic Kidney Disease in the United States. Am J Kidney Dis. 2010;55(Suppl 1):S1–420.

    Google Scholar 

  4. Kanbay M, Turgut F, Uyar ME, Akcay A, Covic A. Causes and mechanisms of nondipping hypertension. Clin Exp Hypertens. 2008;30(7):585–97.

    Article  PubMed  Google Scholar 

  5. Borrelli S, De Nicola L, Stanzione G, Conte G, Minutolo R. Resistant hypertension in nondialysis chronic kidney disease. Int J Hypertens. 2013;2013:929183.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bangash F, Agarwal R. Masked hypertension and white-coat hypertension in chronic kidney disease: a meta-analysis. Clin J Am Soc Nephrol. 2009;4(3):656–64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ridao N, Luño J, García de Vinuesa S, Gómez F, Tejedor A, Valderrábano F. Prevalence of hypertension in renal disease. Nephrol Dial Transplant. 2001;16(Suppl 1):70–3.

    Article  PubMed  Google Scholar 

  8. Muntner P, Anderson A, Charleston J, Chen Z, Ford V, Makos G, et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis. 2010;55(3):441–51.

    Article  CAS  PubMed  Google Scholar 

  9. Curtis JJ, Luke RG, Dustan HP, Kashgarian M, Whelchel JD, Jones P, et al. Remission of essential hypertension after renal transplantation. N Engl J Med. 1983;309(17):1009–15.

    Article  CAS  PubMed  Google Scholar 

  10. Herrera M, Coffman TM. The kidney and hypertension: novel insights from transgenic models. Curr Opin Nephrol Hypertens. 2012;21(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  11. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348(2):101–8.

    Article  PubMed  Google Scholar 

  12. Widgren BR, Herlitz H, Hedner T, Berglund G, Wikstrand J, Jonsson O, et al. Blunted renal sodium excretion during acute saline loading in normotensive men with positive family histories of hypertension. Am J Hypertens. 1991;4(7 Pt 1):570–8.

    Article  CAS  PubMed  Google Scholar 

  13. Todd AS, Macginley RJ, Schollum JB, Johnson RJ, Williams SM, Sutherland WH, et al. Dietary salt loading impairs arterial vascular reactivity. Am J Clin Nutr. 2010;91(3):557–64.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Solaiman Y, Jesri A, Zhao Y, Morrow JD, Egan BM. Low-Sodium DASH reduces oxidative stress and improves vascular function in salt-sensitive humans. J Hum Hypertens. 2009;23(12):826–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McMahon EJ, Bauer JD, Hawley CM, Isbel NM, Stowasser M, Johnson DW, et al. A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol. 2013;24(12):2096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vasavada N, Agarwal R. Role of excess volume in the pathophysiology of hypertension in chronic kidney disease. Kidney Int. 2003;64(5):1772–9.

    Article  PubMed  Google Scholar 

  17. Saad E, Charra B, Raj DS. Hypertension control with daily dialysis. Semin Dial. 2004;17(4):295–8.

    Article  PubMed  Google Scholar 

  18. Ok E, Duman S, Asci G, Tumuklu M, Onen Sertoz O, Kayikcioglu M, et al. Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-centre haemodialysis: a prospective, case-controlled study. Nephrol Dial Transplant. 2011;26(4):1287–96.

    Article  PubMed  Google Scholar 

  19. Günal AI, Duman S, Ozkahya M, Töz H, Asçi G, Akçiçek F, et al. Strict volume control normalizes hypertension in peritoneal dialysis patients. Am J Kidney Dis. 2001;37(3):588–93.

    Article  PubMed  Google Scholar 

  20. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.

    Article  CAS  PubMed  Google Scholar 

  21. Weidmann P, Maxwell MH, Lupu AN, Lewin AJ, Massry SG. Plasma renin activity and blood pressure in terminal renal failure. N Engl J Med. 1971;285(14):757–62.

    Article  CAS  PubMed  Google Scholar 

  22. Vaughan ED, Carey RM, Ayers CR, Peach MJ. Hemodialysis-resistant hypertension: control with an orally active inhibitor of angiotensin-converting enzyme. J Clin Endocrinol Metab. 1979;48(5):869–71.

    Article  PubMed  Google Scholar 

  23. Briet M, Schiffrin EL. Vascular actions of aldosterone. J Vasc Res. 2013;50(2):89–99.

    Article  CAS  PubMed  Google Scholar 

  24. Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model in the rat. J Clin Invest. 1996;98(4):1063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ibrahim HN, Hostetter TH. The renin-aldosterone axis in two models of reduced renal mass in the rat. J Am Soc Nephrol. 1998;9(1):72–6.

    CAS  PubMed  Google Scholar 

  26. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9.

    Article  PubMed  Google Scholar 

  27. Converse RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8.

    Article  PubMed  Google Scholar 

  28. Joles JA, Koomans HA. Causes and consequences of increased sympathetic activity in renal disease. Hypertension. 2004;43(4):699–706.

    Article  CAS  PubMed  Google Scholar 

  29. Ye S, Zhong H, Duong VN, Campese VM. Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension. Hypertension. 2002;39(6):1101–6.

    Article  CAS  PubMed  Google Scholar 

  30. Richter CM. Role of endothelin in chronic renal failure—developments in renal involvement. Rheumatology (Oxford). 2006;45(Suppl 3):iii36–8.

    CAS  Google Scholar 

  31. Dunn MJ, Hood VL. Prostaglandins and the kidney. Am J Phys. 1977;233(3):169–84.

    CAS  Google Scholar 

  32. Kone BC, Baylis C. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Phys. 1997;272(5 Pt 2):F561–78.

    CAS  Google Scholar 

  33. Vaziri ND. Effect of chronic renal failure on nitric oxide metabolism. Am J Kidney Dis. 2001;38(4 Suppl 1):S74–9.

    Article  CAS  PubMed  Google Scholar 

  34. Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, et al. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest. 2005;115(5):1275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Desir GV. Regulation of blood pressure and cardiovascular function by renalase. Kidney Int. 2009;76(4):366–70.

    Article  CAS  PubMed  Google Scholar 

  36. Mellen PB, Bleyer AJ, Erlinger TP, Evans GW, Nieto FJ, Wagenknecht LE, et al. Serum uric acid predicts incident hypertension in a biethnic cohort: the atherosclerosis risk in communities study. Hypertension. 2006;48(6):1037–42.

    Article  CAS  PubMed  Google Scholar 

  37. Menè P, Punzo G. Uric acid: bystander or culprit in hypertension and progressive renal disease? J Hypertens. 2008;26(11):2085–92.

    Article  PubMed  Google Scholar 

  38. Kuriyama S, Maruyama Y, Nishio S, Takahashi Y, Kidoguchi S, Kobayashi C, et al. Serum uric acid and the incidence of CKD and hypertension. Clin Exp Nephrol. 2015;19(6):1127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vaziri ND. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens. 2004;13(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hoorn EJ, Walsh SB, McCormick JA, Zietse R, Unwin RJ, Ellison DH. Pathogenesis of calcineurin inhibitor-induced hypertension. J Nephrol. 2012;25(3):269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Esteva-Font C, Ars E, Guillen-Gomez E, Campistol JM, Sanz L, Jiménez W, et al. Ciclosporin-induced hypertension is associated with increased sodium transporter of the loop of Henle (NKCC2). Nephrol Dial Transplant. 2007;22(10):2810–6.

    Article  CAS  PubMed  Google Scholar 

  43. Boyle SM, Berns JS. Erythropoietin and resistant hypertension in CKD. Semin Nephrol. 2014;34(5):540–9.

    Article  CAS  PubMed  Google Scholar 

  44. Touyz RM. New insights into mechanisms of hypertension. Curr Opin Nephrol Hypertens. 2012;21(2):119–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Turgut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turgut, F., Yaprak, M., Tokmak, F. (2017). Pathophysiological Insights of Hypertension in Patients with Chronic Kidney Disease. In: Covic, A., Kanbay, M., Lerma, E. (eds) Resistant Hypertension in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-56827-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56827-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56825-6

  • Online ISBN: 978-3-319-56827-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics