Skip to main content

TRAIL-R3/R4 and Inhibition of TRAIL Signalling in Cancer

  • Chapter
  • First Online:
Book cover TRAIL, Fas Ligand, TNF and TLR3 in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 12))

Abstract

The tumour necrosis factor (TNF) ligand family member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis predominantly in tumour cells, but not in normal tissues, representing therefore an attractive candidate for cancer therapy. The human TRAIL/TRAIL receptor system is very complex, four different membrane receptors bind the ligand. Two of these receptors, TRAIL-R1 and TRAIL-R2, transmit apoptotic but also non-apoptotic signals, whereas the other two, TRAIL-R3 and TRAIL-R4, act as inhibitors. Most tumour cells co-express several TRAIL receptors, allowing receptor interference. Several molecular mechanisms have been proposed by which TRAIL-R3 and TRAIL-R4 may counteract pro-apoptotic TRAIL signalling at the plasma membrane level, but possibly also intracellularly. A detailed understanding of the role of the individual TRAIL receptors and their interplay will be advantageous for the development of new TRAIL receptor agonists for cancer therapy. In fact, new TRAIL formulations will be needed since first clinical studies with soluble TRAIL or receptor agonistic antibodies showed only limited success. This review summarizes the complex TRAIL/TRAIL receptor system and the mechanisms by which TRAIL-R3 and TRAIL-R4 may interfere with TRAIL-mediated apoptosis induction. In addition, we discuss the prognostic and predictive value of TRAIL receptor expression in patients’ tumour material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3):651–665. doi:10.1182/blood-2011-04-325225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Croft M, Benedict CA, Ware CF (2013) Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 12(2):147–168. doi:10.1038/nrd3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U, Peters N, Scheurich P, Pfizenmaier K (2001) Differential activation of TRAIL-R1 and −2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20(30):4101–4106. doi:10.1038/sj.onc.1204558

    Article  CAS  PubMed  Google Scholar 

  4. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163. doi:10.1038/5517

    Article  CAS  PubMed  Google Scholar 

  5. Haselmann V, Kurz A, Bertsch U, Hubner S, Olempska-Muller M, Fritsch J, Hasler R, Pickl A, Fritsche H, Annewanter F, Engler C, Fleig B, Bernt A, Roder C, Schmidt H, Gelhaus C, Hauser C, Egberts JH, Heneweer C, Rohde AM, Boger C, Knippschild U, Rocken C, Adam D, Walczak H, Schutze S, Janssen O, Wulczyn FG, Wajant H, Kalthoff H, Trauzold A (2014) Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology 146(1):278–290. doi:10.1053/j.gastro.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  6. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682

    Article  CAS  PubMed  Google Scholar 

  7. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690

    Article  CAS  PubMed  Google Scholar 

  8. Krieg A, Krieg T, Wenzel M, Schmitt M, Ramp U, Fang B, Gabbert HE, Gerharz CD, Mahotka C (2003) TRAIL-beta and TRAIL-gamma: two novel splice variants of the human TNF-related apoptosis-inducing ligand (TRAIL) without apoptotic potential. Br J Cancer 88(6):918–927. doi:10.1038/sj.bjc.6600772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang P, Lu Y, Li C, Li N, Yu P, Ma D (2011) Novel transcript variants of TRAIL show different activities in activation of NF-kappaB and apoptosis. Life Sci 89(23–24):839–846. doi:10.1016/j.lfs.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Krieg A, Mersch S, Wolf N, Stoecklein NH, Verde PE, am Esch JS 2nd, Heikaus S, Gabbert HE, Knoefel WT, Mahotka C (2013) Expression of TRAIL-splice variants in gastric carcinomas: identification of TRAIL-gamma as a prognostic marker. BMC Cancer 13:384. doi:10.1186/1471-2407-13-384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spierings DC, de Vries EG, Vellenga E, van den Heuvel FA, Koornstra JJ, Wesseling J, Hollema H, de Jong S (2004) Tissue distribution of the death ligand TRAIL and its receptors. J Histochem Cytochem 52(6):821–831

    Article  CAS  PubMed  Google Scholar 

  12. Hymowitz SG, O'Connell MP, Ultsch MH, Hurst A, Totpal K, Ashkenazi A, de Vos AM, Kelley RF (2000) A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 39(4):633–640

    Article  CAS  PubMed  Google Scholar 

  13. Mariani SM, Krammer PH (1998) Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur J Immunol 28(3):973–982. doi:10.1002/(SICI)1521-4141(199803)28:03<973::AID-IMMU973>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  14. Muhlenbeck F, Schneider P, Bodmer JL, Schwenzer R, Hauser A, Schubert G, Scheurich P, Moosmayer D, Tschopp J, Wajant H (2000) The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 275(41):32208–32213. doi:10.1074/jbc.M000482200

    Article  CAS  PubMed  Google Scholar 

  15. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113

    Article  CAS  PubMed  Google Scholar 

  16. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327):818–821

    Article  CAS  PubMed  Google Scholar 

  17. Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI (1997) TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 7(9):693–696

    Article  CAS  PubMed  Google Scholar 

  18. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277(5327):815–818

    Article  CAS  PubMed  Google Scholar 

  19. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 272(41):25417–25420

    Article  CAS  PubMed  Google Scholar 

  20. Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J (1997) Characterization of two receptors for TRAIL. FEBS Lett 416(3):329–334

    Article  CAS  PubMed  Google Scholar 

  21. Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7(6):821–830

    Article  CAS  PubMed  Google Scholar 

  22. Wu GS, Burns TF, McDonald ER 3rd, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, el-Deiry WS (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17(2):141–143. doi:10.1038/ng1097-141

  23. Picarda G, Surget S, Guiho R, Teletchea S, Berreur M, Tirode F, Pellat-Deceunynck C, Heymann D, Trichet V, Redini F (2012) A functional, new short isoform of death receptor 4 in Ewing's sarcoma cell lines may be involved in TRAIL sensitivity/resistance mechanisms. Mol Cancer Res 10(3):336–346. doi:10.1158/1541-7786.MCR-11-0390

    Article  CAS  PubMed  Google Scholar 

  24. van Roosmalen IA, Quax WJ, Kruyt FA (2014) Two death-inducing human TRAIL receptors to target in cancer: similar or distinct regulation and function? Biochem Pharmacol 91(4):447–456. doi:10.1016/j.bcp.2014.08.010

    Article  PubMed  CAS  Google Scholar 

  25. Bertsch U, Roder C, Kalthoff H, Trauzold A (2014) Compartmentalization of TNF-related apoptosis-inducing ligand (TRAIL) death receptor functions: emerging role of nuclear TRAIL-R2. Cell Death Dis 5:e1390. doi:10.1038/cddis.2014.351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, Legler K, Annewanter F, Campbell AD, Taraborrelli L, Grosse-Wilde A, Coy JF, El-Bahrawy MA, Bergmann F, Koschny R, Werner J, Ganten TM, Schweiger T, Hoetzenecker K, Kenessey I, Hegedus B, Bergmann M, Hauser C, Egberts JH, Becker T, Rocken C, Kalthoff H, Trauzold A, Anderson KI, Sansom OJ, Walczak H (2015) Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27(4):561–573. doi:10.1016/j.ccell.2015.02.014

    Article  CAS  Google Scholar 

  27. Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF, Goodwin RG, Smith CA (1997) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186(7):1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mongkolsapaya J, Cowper AE, Xu XN, Morris G, McMichael AJ, Bell JI, Screaton GR (1998) Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunol 160(1):3–6

    CAS  PubMed  Google Scholar 

  29. Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D, Yuan J, Gurney A, Goddard AD, Godowski P, Ashkenazi A (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7(12):1003–1006

    Article  CAS  PubMed  Google Scholar 

  30. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7(6):813–820

    Article  CAS  PubMed  Google Scholar 

  31. Pan G, Ni J, Yu G, Wei YF, Dixit VM (1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 424(1–2):41–45

    Article  CAS  PubMed  Google Scholar 

  32. Kimberley FC, Screaton GR (2004) Following a TRAIL: update on a ligand and its five receptors. Cell Res 14(5):359–372. doi:10.1038/sj.cr.7290236

    Article  CAS  PubMed  Google Scholar 

  33. Krieg A, Schulte am Esch J 2nd, Ramp U, Hosch SB, Knoefel WT, Gabbert HE, Mahotka C (2006) TRAIL-R4-beta: a new splice variant of TRAIL-receptor 4 lacking the cysteine rich domain 1. Biochem Biophys Res Commun 349(1):115–121. doi:10.1016/j.bbrc.2006.08.031

    Article  CAS  PubMed  Google Scholar 

  34. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342. doi:10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  35. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273(23):14363–14367

    Article  CAS  PubMed  Google Scholar 

  36. Candido R (2014) The osteoprotegerin/tumor necrosis factor related apoptosis-inducing ligand axis in the kidney. Curr Opin Nephrol Hypertens 23(1):69–74. doi:10.1097/01.mnh.0000437611.42417.7a

    Article  CAS  PubMed  Google Scholar 

  37. Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, Huang A, Donahue CJ, Sherwood SW, Baldwin DT, Godowski PJ, Wood WI, Gurney AL, Hillan KJ, Cohen RL, Goddard AD, Botstein D, Ashkenazi A (1998) Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396(6712):699–703. doi:10.1038/25387

    Article  CAS  PubMed  Google Scholar 

  38. Arakawa Y, Tachibana O, Hasegawa M, Miyamori T, Yamashita J, Hayashi Y (2005) Frequent gene amplification and overexpression of decoy receptor 3 in glioblastoma. Acta Neuropathol 109(3):294–298. doi:10.1007/s00401-004-0956-6

    Article  CAS  PubMed  Google Scholar 

  39. Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS (1999) A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem 274(20):13733–13736

    Article  CAS  PubMed  Google Scholar 

  40. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, Cho YH, Ullrich S, Kanakaraj P, Carrell J, Boyd E, Olsen HS, Hu G, Pukac L, Liu D, Ni J, Kim S, Gentz R, Feng P, Moore PA, Ruben SM, Wei P (2002) TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16(3):479–492

    Article  CAS  PubMed  Google Scholar 

  41. Wang W, Zhang M, Sun W, Yang S, Su Y, Zhang H, Liu C, Li X, Lin L, Kim S, Okunieff P, Zhang Z, Zhang L (2013) Reduction of decoy receptor 3 enhances TRAIL-mediated apoptosis in pancreatic cancer. PLoS One 8(10):e74272. doi:10.1371/journal.pone.0074272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou J, Song S, He S, Wang Z, Zhang B, Li D, Zhu D (2013) Silencing of decoy receptor 3 (DcR3) expression by siRNA in pancreatic carcinoma cells induces Fas ligand-mediated apoptosis in vitro and in vivo. Int J Mol Med 32(3):653–660. doi:10.3892/ijmm.2013.1437

    PubMed  Google Scholar 

  43. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davidovich P, Kearney CJ, Martin SJ (2014) Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol Chem 395(10):1163–1171. doi:10.1515/hsz-2014-0164

    Article  CAS  PubMed  Google Scholar 

  45. Renehan AG, Booth C, Potten CS (2001) What is apoptosis, and why is it important? BMJ 322(7301):1536–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45(6):487–498. doi:10.1111/j.1365-2184.2012.00845.x

    Article  CAS  PubMed  Google Scholar 

  48. Chen D, Yu J, Zhang L (2016) Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta 1865(2):228–236. doi:10.1016/j.bbcan.2016.03.003

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Azijli K, Weyhenmeyer B, Peters GJ, de Jong S, Kruyt FA (2013) Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ 20(7):858–868. doi:10.1038/cdd.2013.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Varfolomeev E, Maecker H, Sharp D, Lawrence D, Renz M, Vucic D, Ashkenazi A (2005) Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 280(49):40599–40608. doi:10.1074/jbc.M509560200

    Article  CAS  PubMed  Google Scholar 

  51. Grunert M, Gottschalk K, Kapahnke J, Gundisch S, Kieser A, Jeremias I (2012) The adaptor protein FADD and the initiator caspase-8 mediate activation of NF-kappaB by TRAIL. Cell Death Dis 3:e414. doi:10.1038/cddis.2012.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang L, Blackwell K, Workman LM, Chen S, Pope MR, Janz S, Habelhah H (2015) RIP1 cleavage in the kinase domain regulates TRAIL-induced NF-kappaB activation and lymphoma survival. Mol Cell Biol 35(19):3324–3338. doi:10.1128/MCB.00692-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song JH, Tse MC, Bellail A, Phuphanich S, Khuri F, Kneteman NM, Hao C (2007) Lipid rafts and nonrafts mediate tumor necrosis factor related apoptosis-inducing ligand induced apoptotic and nonapoptotic signals in non small cell lung carcinoma cells. Cancer Res 67(14):6946–6955. doi:10.1158/0008-5472.CAN-06-3896

    Article  CAS  PubMed  Google Scholar 

  54. Collison A, Foster PS, Mattes J (2009) Emerging role of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) as a key regulator of inflammatory responses. Clin Exp Pharmacol Physiol 36(11):1049–1053. doi:10.1111/j.1440-1681.2009.05258.x

    Article  CAS  PubMed  Google Scholar 

  55. Mizrahi K, Askenasy N (2014) Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation. Blood 124(2):176–183. doi:10.1182/blood-2014-03-559641

    Article  PubMed  CAS  Google Scholar 

  56. Sato K, Hida S, Takayanagi H, Yokochi T, Kayagaki N, Takeda K, Yagita H, Okumura K, Tanaka N, Taniguchi T, Ogasawara K (2001) Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur J Immunol 31(11):3138–3146. doi:10.1002/1521-4141(200111)31:11<3138::AID-IMMU3138>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  57. Stegmann KA, Bjorkstrom NK, Veber H, Ciesek S, Riese P, Wiegand J, Hadem J, Suneetha PV, Jaroszewicz J, Wang C, Schlaphoff V, Fytili P, Cornberg M, Manns MP, Geffers R, Pietschmann T, Guzman CA, Ljunggren HG, Wedemeyer H (2010) Interferon-alpha-induced TRAIL on natural killer cells is associated with control of hepatitis C virus infection. Gastroenterology 138(5):1885–1897. doi:10.1053/j.gastro.2010.01.051

    Article  CAS  PubMed  Google Scholar 

  58. Schuster IS, Wikstrom ME, Brizard G, Coudert JD, Estcourt MJ, Manzur M, O'Reilly LA, Smyth MJ, Trapani JA, Hill GR, Andoniou CE, Degli-Esposti MA (2014) TRAIL+ NK cells control CD4+ T cell responses during chronic viral infection to limit autoimmunity. Immunity 41(4):646–656. doi:10.1016/j.immuni.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  59. Cook KD, Kline HC, Whitmire JK (2015) NK cells inhibit humoral immunity by reducing the abundance of CD4+ T follicular helper cells during a chronic virus infection. J Leukoc Biol 98(2):153–162. doi:10.1189/jlb.4HI1214-594R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waggoner SN, Cornberg M, Selin LK, Welsh RM (2011) Natural killer cells act as rheostats modulating antiviral T cells. Nature 481(7381):394–398. doi:10.1038/nature10624

    PubMed  PubMed Central  Google Scholar 

  61. Lang PA, Lang KS, Xu HC, Grusdat M, Parish IA, Recher M, Elford AR, Dhanji S, Shaabani N, Tran CW, Dissanayake D, Rahbar R, Ghazarian M, Brustle A, Fine J, Chen P, Weaver CT, Klose C, Diefenbach A, Haussinger D, Carlyle JR, Kaech SM, Mak TW, Ohashi PS (2012) Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci U S A 109(4):1210–1215. doi:10.1073/pnas.1118834109

    Article  CAS  PubMed  Google Scholar 

  62. Peppa D, Gill US, Reynolds G, Easom NJ, Pallett LJ, Schurich A, Micco L, Nebbia G, Singh HD, Adams DH, Kennedy PT, Maini MK (2013) Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 210(1):99–114. doi:10.1084/jem.20121172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jeremias I, Herr I, Boehler T, Debatin KM (1998) TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur J Immunol 28(1):143–152. doi:10.1002/(SICI)1521-4141(199801)28:01<143::AID-IMMU143>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  64. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H (1999) Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 189(9):1451–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang XR, Zhang LY, Devadas S, Li L, Keegan AD, Shi YF (2003) Reciprocal expression of TRAIL and CD95L in Th1 and Th2 cells: role of apoptosis in T helper subset differentiation. Cell Death Differ 10(2):203–210. doi:10.1038/sj.cdd.4401138

    Article  CAS  PubMed  Google Scholar 

  66. Roberts AI, Devadas S, Zhang X, Zhang L, Keegan A, Greeneltch K, Solomon J, Wei L, Das J, Sun E, Liu C, Yuan Z, Zhou JN, Shi Y (2003) The role of activation-induced cell death in the differentiation of T-helper-cell subsets. Immunol Res 28(3):285–293. doi:10.1385/IR:28:3:285

    Article  PubMed  Google Scholar 

  67. Weckmann M, Collison A, Simpson JL, Kopp MV, Wark PA, Smyth MJ, Yagita H, Matthaei KI, Hansbro N, Whitehead B, Gibson PG, Foster PS, Mattes J (2007) Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease. Nat Med 13(11):1308–1315. doi:10.1038/nm1660

    Article  CAS  PubMed  Google Scholar 

  68. Mirandola P, Ponti C, Gobbi G, Sponzilli I, Vaccarezza M, Cocco L, Zauli G, Secchiero P, Manzoli FA, Vitale M (2004) Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood 104(8):2418–2424. doi:10.1182/blood-2004-04-1294

    Article  CAS  PubMed  Google Scholar 

  69. Brincks EL, Gurung P, Langlois RA, Hemann EA, Legge KL, Griffith TS (2011) The magnitude of the T cell response to a clinically significant dose of influenza virus is regulated by TRAIL. J Immunol 187(9):4581–4588. doi:10.4049/jimmunol.1002241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brincks EL, Katewa A, Kucaba TA, Griffith TS, Legge KL (2008) CD8 T cells utilize TRAIL to control influenza virus infection. J Immunol 181(7):4918–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Herold S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S, Mack M, Kuziel WA, Corazza N, Brunner T, Seeger W, Lohmeyer J (2008) Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 205(13):3065–3077. doi:10.1084/jem.20080201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gurung P, Rai D, Condotta SA, Babcock JC, Badovinac VP, Griffith TS (2011) Immune unresponsiveness to secondary heterologous bacterial infection after sepsis induction is TRAIL dependent. J Immunol 187(5):2148–2154. doi:10.4049/jimmunol.1101180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Beyer K, Poetschke C, Partecke LI, von Bernstorff W, Maier S, Broeker BM, Heidecke CD (2014) TRAIL induces neutrophil apoptosis and dampens sepsis-induced organ injury in murine colon ascendens stent peritonitis. PLoS One 9(6):e97451. doi:10.1371/journal.pone.0097451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Falschlehner C, Schaefer U, Walczak H (2009) Following TRAIL's path in the immune system. Immunology 127(2):145–154. doi:10.1111/j.1365-2567.2009.03058.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fanger NA, Maliszewski CR, Schooley K, Griffith TS (1999) Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 190(8):1155–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA (1999) Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 189(8):1343–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7(1):94–100. doi:10.1038/83416

    Article  CAS  PubMed  Google Scholar 

  78. Lelaidier M, Diaz-Rodriguez Y, Cordeau M, Cordeiro P, Haddad E, Herblot S, Duval M (2015) TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells. Oncotarget 6(30):29440–29455. doi:10.18632/oncotarget.4984

    PubMed  PubMed Central  Google Scholar 

  79. Tecchio C, Scapini P, Pizzolo G, Cassatella MA (2013) On the cytokines produced by human neutrophils in tumors. Semin Cancer Biol 23(3):159–170. doi:10.1016/j.semcancer.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  80. Lin YC, Richburg JH (2014) Characterization of the role of tumor necrosis factor apoptosis inducing ligand (TRAIL) in spermatogenesis through the evaluation of trail gene-deficient mice. PLoS One 9(4):e93926. doi:10.1371/journal.pone.0093926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zauli G, Celeghini C, Monasta L, Martinelli M, Luppi S, Gonelli A, Grill V, Ricci G, Secchiero P (2014) Soluble TRAIL is present at high concentrations in seminal plasma and promotes spermatozoa survival. Reproduction 148(2):191–198. doi:10.1530/REP-14-0144

    Article  CAS  PubMed  Google Scholar 

  82. Zhang XD, Nguyen T, Thomas WD, Sanders JE, Hersey P (2000) Mechanisms of resistance of normal cells to TRAIL induced apoptosis vary between different cell types. FEBS Lett 482(3):193–199

    Article  CAS  PubMed  Google Scholar 

  83. Gochuico BR, Zhang J, Ma BY, Marshak-Rothstein A, Fine A (2000) TRAIL expression in vascular smooth muscle. Am J Physiol Lung Cell Mol Physiol 278(5):L1045–L1050

    CAS  PubMed  Google Scholar 

  84. Secchiero P, Gonelli A, Carnevale E, Milani D, Pandolfi A, Zella D, Zauli G (2003) TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 107(17):2250–2256. doi:10.1161/01.CIR.0000062702.60708.C4

    Article  PubMed  Google Scholar 

  85. Secchiero P, Corallini F, di Iasio MG, Gonelli A, Barbarotto E, Zauli G (2005) TRAIL counteracts the proadhesive activity of inflammatory cytokines in endothelial cells by down-modulating CCL8 and CXCL10 chemokine expression and release. Blood 105(9):3413–3419. doi:10.1182/blood-2004-10-4111

    Article  CAS  PubMed  Google Scholar 

  86. Zauli G, Pandolfi A, Gonelli A, Di Pietro R, Guarnieri S, Ciabattoni G, Rana R, Vitale M, Secchiero P (2003) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sequentially upregulates nitric oxide and prostanoid production in primary human endothelial cells. Circ Res 92(7):732–740. doi:10.1161/01.RES.0000067928.83455.9C

    Article  CAS  PubMed  Google Scholar 

  87. Di Pietro R, Mariggio MA, Guarnieri S, Sancilio S, Giardinelli A, Di Silvestre S, Consoli A, Zauli G, Pandolfi A (2006) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) regulates endothelial nitric oxide synthase (eNOS) activity and its localization within the human vein endothelial cells (HUVEC) in culture. J Cell Biochem 97(4):782–794. doi:10.1002/jcb.20686

    Article  PubMed  CAS  Google Scholar 

  88. Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12(1):3–20

    Article  CAS  PubMed  Google Scholar 

  89. Johnston PG (2014) Identification of clinically relevant molecular subtypes in colorectal cancer: the dawning of a new era. Oncologist 19(5):568–573. doi:10.1634/theoncologist.2014-038

    Article  PubMed  PubMed Central  Google Scholar 

  90. Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A (2009) Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 101(19):1308–1324. doi:10.1093/jnci/djp280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Strater J, Hinz U, Walczak H, Mechtersheimer G, Koretz K, Herfarth C, Moller P, Lehnert T (2002) Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8(12):3734–3740

    PubMed  Google Scholar 

  92. McCarthy MM, Sznol M, DiVito KA, Camp RL, Rimm DL, Kluger HM (2005) Evaluating the expression and prognostic value of TRAIL-R1 and TRAIL-R2 in breast cancer. Clin Cancer Res 11(14):5188–5194. doi:10.1158/1078-0432.CCR-05-0158

    Article  CAS  PubMed  Google Scholar 

  93. van Geelen CM, Westra JL, de Vries EG, Boersma-van Ek W, Zwart N, Hollema H, Boezen HM, Mulder NH, Plukker JT, de Jong S, Kleibeuker JH, Koornstra JJ (2006) Prognostic significance of tumor necrosis factor-related apoptosis-inducing ligand and its receptors in adjuvantly treated stage III colon cancer patients. J Clin Oncol Off J Am Soc Clin Oncol 24(31):4998–5004. doi:10.1200/JCO.2006.06.8809

    Article  CAS  Google Scholar 

  94. Oikonomou E, Kosmidou V, Katseli A, Kothonidis K, Mourtzoukou D, Kontogeorgos G, Andera L, Zografos G, Pintzas A (2009) TRAIL receptor upregulation and the implication of KRAS/BRAF mutations in human colon cancer tumors. Int J Cancer 125(9):2127–2135. doi:10.1002/ijc.24613

    Article  CAS  PubMed  Google Scholar 

  95. Duiker EW, van der Zee AG, de Graeff P, Boersma-van Ek W, Hollema H, de Bock GH, de Jong S, de Vries EG (2010) The extrinsic apoptosis pathway and its prognostic impact in ovarian cancer. Gynecol Oncol 116(3):549–555. doi:10.1016/j.ygyno.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  96. Gallmeier E, Bader DC, Kriegl L, Berezowska S, Seeliger H, Goke B, Kirchner T, Bruns C, De Toni EN (2013) Loss of TRAIL-receptors is a recurrent feature in pancreatic cancer and determines the prognosis of patients with no nodal metastasis after surgery. PLoS One 8(2):e56760. doi:10.1371/journal.pone.0056760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shin MS, Kim HS, Lee SH, Park WS, Kim SY, Park JY, Lee JH, Lee SK, Lee SN, Jung SS, Han JY, Kim H, Lee JY, Yoo NJ (2001) Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 61(13):4942–4946

    CAS  PubMed  Google Scholar 

  98. Jeng YM, Hsu HC (2002) Mutation of the DR5/TRAIL receptor 2 gene is infrequent in hepatocellular carcinoma. Cancer Lett 181(2):205–208

    Article  CAS  PubMed  Google Scholar 

  99. Teng MS, Brandwein-Gensler MS, Teixeira MS, Martignetti JA, Duffey DC (2005) A study of TRAIL receptors in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 131(5):407–412. doi:10.1001/archotol.131.5.407

    Article  PubMed  Google Scholar 

  100. Pai SI, Wu GS, Ozoren N, Wu L, Jen J, Sidransky D, El-Deiry WS (1998) Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 58(16):3513–3518

    CAS  PubMed  Google Scholar 

  101. Martinez-Ferrandis JI, Rodriguez-Lopez R, Milne RL, Gonzalez E, Cebolla E, Chirivella I, Zamora P, Arias JI, Palacios S, Cervantes A, Diez O, Benitez J, Armengod ME (2007) Polymorphisms in TRAIL receptor genes and risk of breast cancer in Spanish women. Cancer Biomark 3(2):89–93

    Article  CAS  PubMed  Google Scholar 

  102. Jamshidi M, Fagerholm R, Khan S, Aittomaki K, Czene K, Darabi H, Li J, Andrulis IL, Chang-Claude J, Devilee P, Fasching PA, Michailidou K, Bolla MK, Dennis J, Wang Q, Guo Q, Rhenius V, Cornelissen S, Rudolph A, Knight JA, Loehberg CR, Burwinkel B, Marme F, Hopper JL, Southey MC, Bojesen SE, Flyger H, Brenner H, Holleczek B, Margolin S, Mannermaa A, Kosma VM, kConFab I, Van Dyck L, Nevelsteen I, Couch FJ, Olson JE, Giles GG, McLean C, Haiman CA, Henderson BE, Winqvist R, Pylkas K, Tollenaar RA, Garcia-Closas M, Figueroa J, Hooning MJ, Martens JW, Cox A, Cross SS, Simard J, Dunning AM, Easton DF, Pharoah PD, Hall P, Blomqvist C, Schmidt MK, Nevanlinna H (2015) SNP-SNP interaction analysis of NF-kappaB signaling pathway on breast cancer survival. Oncotarget 6(35):37979–37994. doi:10.18632/oncotarget.4991

  103. Min YJ, Lee JH, Choi SJ, Chi HS, Lee JS, Kim WK, Lee KH (2004) Prognostic significance of Fas (CD95) and TRAIL receptors (DR4/DR5) expression in acute myelogenous leukemia. Leuk Res 28(4):359–365. doi:10.1016/j.leukres.2003.08.015

    Article  CAS  PubMed  Google Scholar 

  104. Koornstra JJ, Kleibeuker JH, van Geelen CM, Rijcken FE, Hollema H, de Vries EG, de Jong S (2003) Expression of TRAIL (TNF-related apoptosis-inducing ligand) and its receptors in normal colonic mucosa, adenomas, and carcinomas. J Pathol 200(3):327–335. doi:10.1002/path.1364

    Article  CAS  PubMed  Google Scholar 

  105. Sanlioglu AD, Korcum AF, Pestereli E, Erdogan G, Karaveli S, Savas B, Griffith TS, Sanlioglu S (2007) TRAIL death receptor-4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma. Int J Radiat Oncol Biol Phys 69(3):716–723. doi:10.1016/j.ijrobp.2007.03.057

    Article  CAS  PubMed  Google Scholar 

  106. Li Y, Jin X, Li J, Jin X, Yu J, Sun X, Chu Y, Xu C, Li X, Wang X, Kakehi Y, Wu X (2012) Expression of TRAIL, DR4, and DR5 in bladder cancer: correlation with response to adjuvant therapy and implications of prognosis. Urology 79(4):968.e967–968.e915. doi:10.1016/j.urology.2011.11.011

    Article  Google Scholar 

  107. Ganten TM, Sykora J, Koschny R, Batke E, Aulmann S, Mansmann U, Stremmel W, Sinn HP, Walczak H (2009) Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer. J Mol Med 87(10):995–1007. doi:10.1007/s00109-009-0510-z

    Article  CAS  PubMed  Google Scholar 

  108. Koschny R, Brost S, Hinz U, Sykora J, Batke EM, Singer S, Breuhahn K, Stremmel W, Walczak H, Schemmer P, Schirmacher P, Ganten TM (2013) Cytosolic and nuclear caspase-8 have opposite impact on survival after liver resection for hepatocellular carcinoma. BMC Cancer 13:532. doi:10.1186/1471-2407-13-532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Macher-Goeppinger S, Aulmann S, Tagscherer KE, Wagener N, Haferkamp A, Penzel R, Brauckhoff A, Hohenfellner M, Sykora J, Walczak H, Teh BT, Autschbach F, Herpel E, Schirmacher P, Roth W (2009) Prognostic value of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors in renal cell cancer. Clin Cancer Res 15(2):650–659. doi:10.1158/1078-0432.CCR-08-0284

    Article  CAS  PubMed  Google Scholar 

  110. Yoldas B, Ozer C, Ozen O, Canpolat T, Dogan I, Griffith TS, Sanlioglu S, Ozluoglu LN (2011) Clinical significance of TRAIL and TRAIL receptors in patients with head and neck cancer. Head Neck 33(9):1278–1284. doi:10.1002/hed.21598

    Article  PubMed  Google Scholar 

  111. Spierings DC, de Vries EG, Timens W, Groen HJ, Boezen HM, de Jong S (2003) Expression of TRAIL and TRAIL death receptors in stage III non-small cell lung cancer tumors. Clin Cancer Res 9(9):3397–3405

    CAS  PubMed  Google Scholar 

  112. Cooper WA, Kohonen-Corish MR, Zhuang L, McCaughan B, Kennedy C, Screaton G, Sutherland RL, Lee CS (2008) Role and prognostic significance of tumor necrosis factor-related apoptosis-inducing ligand death receptor DR5 in nonsmall-cell lung cancer and precursor lesions. Cancer 113(1):135–142. doi:10.1002/cncr.23528

    Article  CAS  PubMed  Google Scholar 

  113. Vigneswaran N, Baucum DC, Wu J, Lou Y, Bouquot J, Muller S, Zacharias W (2007) Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression. BMC Cancer 7:108. doi:10.1186/1471-2407-7-108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Hernandez-Cueto A, Hernandez-Cueto D, Antonio-Andres G, Mendoza-Marin M, Jimenez-Gutierrez C, Sandoval-Mejia AL, Mora-Campos R, Gonzalez-Bonilla C, Vega MI, Bonavida B, Huerta-Yepez S (2014) Death receptor 5 expression is inversely correlated with prostate cancer progression. Mol Med Rep 10(5):2279–2286. doi:10.3892/mmr.2014.2504

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bavi P, Prabhakaran SE, Abubaker J, Qadri Z, George T, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Hussain AR, Uddin S, Al-Kuraya KS (2010) Prognostic significance of TRAIL death receptors in middle eastern colorectal carcinomas and their correlation to oncogenic KRAS alterations. Mol Cancer 9:203. doi:10.1186/1476-4598-9-203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Yao Q, Du J, Lin J, Luo Y, Wang Y, Liu Y, Zhang B, Ren C, Liu C (2016) Prognostic significance of TRAIL signalling molecules in cervical squamous cell carcinoma. J Clin Pathol 69(2):122–127. doi:10.1136/jclinpath-2014-202811

    Article  CAS  PubMed  Google Scholar 

  117. Kuijlen JM, Mooij JJ, Platteel I, Hoving EW, van der Graaf WT, Span MM, Hollema H, den Dunnen WF (2006) TRAIL-receptor expression is an independent prognostic factor for survival in patients with a primary glioblastoma multiforme. J Neurooncol 78(2):161–171. doi:10.1007/s11060-005-9081-1

    Article  CAS  PubMed  Google Scholar 

  118. Kriegl L, Jung A, Horst D, Rizzani A, Jackstadt R, Hermeking H, Gallmeier E, Gerbes AL, Kirchner T, Goke B, De Toni EN (2012) Microsatellite instability, KRAS mutations and cellular distribution of TRAIL-receptors in early stage colorectal cancer. PLoS One 7(12):e51654. doi:10.1371/journal.pone.0051654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen JJ, Shen HC, Rivera Rosado LA, Zhang Y, Di X, Zhang B (2012) Mislocalization of death receptors correlates with cellular resistance to their cognate ligands in human breast cancer cells. Oncotarget 3(8):833–842. doi:10.18632/oncotarget.542

    Article  PubMed  PubMed Central  Google Scholar 

  120. Koksal IT, Sanlioglu AD, Karacay B, Griffith TS, Sanlioglu S (2008) Tumor necrosis factor-related apoptosis inducing ligand-R4 decoy receptor expression is correlated with high Gleason scores, prostate-specific antigen recurrence, and decreased survival in patients with prostate carcinoma. Urol Oncol 26(2):158–165. doi:10.1016/j.urolonc.2007.01.022

    Article  CAS  PubMed  Google Scholar 

  121. Sanlioglu AD, Dirice E, Elpek O, Korcum AF, Ozdogan M, Suleymanlar I, Balci MK, Griffith TS, Sanlioglu S (2009) High TRAIL death receptor 4 and decoy receptor 2 expression correlates with significant cell death in pancreatic ductal adenocarcinoma patients. Pancreas 38(2):154–160. doi:10.1097/MPA.0b013e31818db9e3

    Article  CAS  PubMed  Google Scholar 

  122. Koschny R, Krupp W, Xu LX, Mueller WC, Bauer M, Sinn P, Keller M, Koschny T, Walczak H, Bruckner T, Ganten TM, Holland H (2015) WHO grade related expression of TRAIL-receptors and apoptosis regulators in meningioma. Pathol Res Pract 211(2):109–116. doi:10.1016/j.prp.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  123. Granci V, Bibeau F, Kramar A, Boissiere-Michot F, Thezenas S, Thirion A, Gongora C, Martineau P, Del Rio M, Ychou M (2008) Prognostic significance of TRAIL-R1 and TRAIL-R3 expression in metastatic colorectal carcinomas. Eur J Cancer 44(15):2312–2318. doi:10.1016/j.ejca.2008.06.042

    Article  CAS  PubMed  Google Scholar 

  124. Erkul E, Kucukodaci Z, Pinar D, Gungor A, Alparslan Babayigit M, Kurt O, Cincik H (2016) TRAIL and TRAIL receptors in patients with laryngeal cancer. Head Neck 38(Suppl 1):E535–E541. doi:10.1002/hed.24035

    Article  PubMed  Google Scholar 

  125. Bolkun L, Lemancewicz D, Jablonska E, Szumowska A, Bolkun-Skornicka U, Moniuszko M, Dzieciol J, Kloczko J (2015) Prognostic significance of ligands belonging to tumour necrosis factor superfamily in acute lymphoblastic leukaemia. Leuk Res 39(3):290–295. doi:10.1016/j.leukres.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  126. Bolkun L, Lemancewicz D, Jablonska E, Szumowska A, Bolkun-Skornicka U, Ratajczak-Wrona W, Dzieciol J, Kloczko J (2015) The impact of TNF superfamily molecules on overall survival in acute myeloid leukaemia: correlation with biological and clinical features. Ann Hematol 94(1):35–43. doi:10.1007/s00277-014-2178-x

    Article  CAS  PubMed  Google Scholar 

  127. Toiyama D, Takaha N, Shinnoh M, Ueda T, Kimura Y, Nakamura T, Hongo F, Mikami K, Kamoi K, Kawauchi A, Miki T (2013) Significance of serum tumor necrosis factor-related apoptosis-inducing ligand as a prognostic biomarker for renal cell carcinoma. Mol Clin Oncol 1(1):69–74. doi:10.3892/mco.2012.35

    PubMed  Google Scholar 

  128. McLornan DP, Barrett HL, Cummins R, McDermott U, McDowell C, Conlon SJ, Coyle VM, Van Schaeybroeck S, Wilson R, Kay EW, Longley DB, Johnston PG (2010) Prognostic significance of TRAIL signaling molecules in stage II and III colorectal cancer. Clin Cancer Res 16(13):3442–3451. doi:10.1158/1078-0432.CCR-10-0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L (2016) Onto better TRAILs for cancer treatment. Cell Death Differ 23(5):733–747. doi:10.1038/cdd.2015.174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J, Fox JA (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 299(1):31–38

    CAS  PubMed  Google Scholar 

  131. Ganten TM, Koschny R, Sykora J, Schulze-Bergkamen H, Buchler P, Haas TL, Schader MB, Untergasser A, Stremmel W, Walczak H (2006) Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 12(8):2640–2646. doi:10.1158/1078-0432.CCR-05-2635

    Article  CAS  PubMed  Google Scholar 

  132. Berg D, Lehne M, Muller N, Siegmund D, Munkel S, Sebald W, Pfizenmaier K, Wajant H (2007) Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell Death Differ 14(12):2021–2034. doi:10.1038/sj.cdd.4402213

    Article  CAS  PubMed  Google Scholar 

  133. Schneider B, Munkel S, Krippner-Heidenreich A, Grunwald I, Wels WS, Wajant H, Pfizenmaier K, Gerspach J (2010) Potent antitumoral activity of TRAIL through generation of tumor-targeted single-chain fusion proteins. Cell Death Dis 1:e68. doi:10.1038/cddis.2010.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gieffers C, Kluge M, Merz C, Sykora J, Thiemann M, Schaal R, Fischer C, Branschadel M, Abhari BA, Hohenberger P, Fulda S, Fricke H, Hill O (2013) APG350 induces superior clustering of TRAIL receptors and shows therapeutic antitumor efficacy independent of cross-linking via Fcgamma receptors. Mol Cancer Ther 12(12):2735–2747. doi:10.1158/1535-7163.MCT-13-0323

    Article  CAS  PubMed  Google Scholar 

  135. Siegemund M, Pollak N, Seifert O, Wahl K, Hanak K, Vogel A, Nussler AK, Gottsch D, Munkel S, Bantel H, Kontermann RE, Pfizenmaier K (2012) Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity. Cell Death Dis 3:e295. doi:10.1038/cddis.2012.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. de Bruyn M, Wei Y, Wiersma VR, Samplonius DF, Klip HG, van der Zee AG, Yang B, Helfrich W, Bremer E (2011) Cell surface delivery of TRAIL strongly augments the tumoricidal activity of T cells. Clin Cancer Res 17(17):5626–5637. doi:10.1158/1078-0432.CCR-11-0303

    Article  PubMed  CAS  Google Scholar 

  137. El-Mesery M, Trebing J, Schafer V, Weisenberger D, Siegmund D, Wajant H (2013) CD40-directed scFv-TRAIL fusion proteins induce CD40-restricted tumor cell death and activate dendritic cells. Cell Death Dis 4:e916. doi:10.1038/cddis.2013.402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wiersma VR, de Bruyn M, Shi C, Gooden MJ, Wouters MC, Samplonius DF, Hendriks D, Nijman HW, Wei Y, Zhou J, Helfrich W, Bremer E (2015) C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity. MAbs 7(2):321–330. doi:10.1080/19420862.2015.1007811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lemke J, von Karstedt S, Zinngrebe J, Walczak H (2014) Getting TRAIL back on track for cancer therapy. Cell Death Differ 21(9):1350–1364. doi:10.1038/cdd.2014.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang TM, Barbone D, Fennell DA, Broaddus VC (2009) Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids. Am J Respir Cell Mol Biol 41(1):14–23. doi:10.1165/rcmb.2008-0320OC

    Article  CAS  PubMed  Google Scholar 

  141. Chandrasekaran S, Marshall JR, Messing JA, Hsu JW, King MR (2014) TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS One 9(10):e111487. doi:10.1371/journal.pone.0111487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Newsom-Davis T, Prieske S, Walczak H (2009) Is TRAIL the holy grail of cancer therapy? Apoptosis 14(4):607–623. doi:10.1007/s10495-009-0321-2

    Article  CAS  PubMed  Google Scholar 

  143. Bernard D, Quatannens B, Vandenbunder B, Abbadie C (2001) Rel/NF-kappaB transcription factors protect against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by up-regulating the TRAIL decoy receptor DcR1. J Biol Chem 276(29):27322–27328. doi:10.1074/jbc.M011183200

    Article  CAS  PubMed  Google Scholar 

  144. Sanlioglu AD, Dirice E, Aydin C, Erin N, Koksoy S, Sanlioglu S (2005) Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC Cancer 5:54. doi:10.1186/1471-2407-5-54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Riccioni R, Pasquini L, Mariani G, Saulle E, Rossini A, Diverio D, Pelosi E, Vitale A, Chierichini A, Cedrone M, Foa R, Lo Coco F, Peschle C, Testa U (2005) TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 90(5):612–624

    CAS  PubMed  Google Scholar 

  146. Sanlioglu AD, Karacay B, Koksal IT, Griffith TS, Sanlioglu S (2007) DcR2 (TRAIL-R4) siRNA and adenovirus delivery of TRAIL (Ad5hTRAIL) break down in vitro tumorigenic potential of prostate carcinoma cells. Cancer Gene Ther 14(12):976–984. doi:10.1038/sj.cgt.7701087

    Article  CAS  PubMed  Google Scholar 

  147. Chamuleau ME, Ossenkoppele GJ, van Rhenen A, van Dreunen L, Jirka SM, Zevenbergen A, Schuurhuis GJ, van de Loosdrecht AA (2011) High TRAIL-R3 expression on leukemic blasts is associated with poor outcome and induces apoptosis-resistance which can be overcome by targeting TRAIL-R2. Leuk Res 35(6):741–749. doi:10.1016/j.leukres.2010.12.032

    Article  CAS  PubMed  Google Scholar 

  148. Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11(2):255–260

    Article  CAS  PubMed  Google Scholar 

  149. Morizot A, Merino D, Lalaoui N, Jacquemin G, Granci V, Iessi E, Lanneau D, Bouyer F, Solary E, Chauffert B, Saas P, Garrido C, Micheau O (2011) Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level. Cell Death Differ 18(4):700–711. doi:10.1038/cdd.2010.144

    Article  CAS  PubMed  Google Scholar 

  150. Wada S, Manabe N, Nakayama M, Inou N, Matsui T, Miyamoto H (2002) TRAIL-decoy receptor 1 plays inhibitory role in apoptosis of granulosa cells from pig ovarian follicles. J Vet Med Sci 64(5):435–439

    Article  CAS  PubMed  Google Scholar 

  151. Griffith TS, Rauch CT, Smolak PJ, Waugh JY, Boiani N, Lynch DH, Smith CA, Goodwin RG, Kubin MZ (1999) Functional analysis of TRAIL receptors using monoclonal antibodies. J Immunol 162(5):2597–2605

    CAS  PubMed  Google Scholar 

  152. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P (1999) Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 59(11):2747–2753

    CAS  PubMed  Google Scholar 

  153. Wuchter C, Krappmann D, Cai Z, Ruppert V, Scheidereit C, Dorken B, Ludwig WD, Karawajew L (2001) In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-kappa B activity. Leukemia 15(6):921–928

    Article  CAS  PubMed  Google Scholar 

  154. Neumann S, Hasenauer J, Pollak N, Scheurich P (2014) Dominant negative effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes. J Biol Chem 289(23):16576–16587. doi:10.1074/jbc.M114.559468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Truneh A, Sharma S, Silverman C, Khandekar S, Reddy MP, Deen KC, McLaughlin MM, Srinivasula SM, Livi GP, Marshall LA, Alnemri ES, Williams WV, Doyle ML (2000) Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J Biol Chem 275(30):23319–23325. doi:10.1074/jbc.M910438199

    Article  CAS  PubMed  Google Scholar 

  156. Clancy L, Mruk K, Archer K, Woelfel M, Mongkolsapaya J, Screaton G, Lenardo MJ, Chan FK (2005) Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci U S A 102(50):18099–18104. doi:10.1073/pnas.0507329102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26(19):7046–7055. doi:10.1128/MCB.00520-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Valley CC, Lewis AK, Mudaliar DJ, Perlmutter JD, Braun AR, Karim CB, Thomas DD, Brody JR, Sachs JN (2012) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor 5 networks that are highly organized. J Biol Chem 287(25):21265–21278. doi:10.1074/jbc.M111.306480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chan FK (2000) The pre-ligand binding assembly domain: a potential target of inhibition of tumour necrosis factor receptor function. Ann Rheum Dis 59(Suppl 1):i50–i53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, Tsien RY, Lenardo MJ (2000) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288(5475):2354–2357

    Article  CAS  PubMed  Google Scholar 

  161. Branschadel M, Aird A, Zappe A, Tietz C, Krippner-Heidenreich A, Scheurich P (2010) Dual function of cysteine rich domain (CRD) 1 of TNF receptor type 1: conformational stabilization of CRD2 and control of receptor responsiveness. Cell Signal 22(3):404–414. doi:10.1016/j.cellsig.2009.10.011

    Article  PubMed  CAS  Google Scholar 

  162. Lewis AK, Valley CC, Sachs JN (2012) TNFR1 signaling is associated with backbone conformational changes of receptor dimers consistent with overactivation in the R92Q TRAPS mutant. Biochemistry 51(33):6545–6555. doi:10.1021/bi3006626

    Article  CAS  PubMed  Google Scholar 

  163. Lewis AK, James ZM, McCaffrey JE, Braun AR, Karim CB, Thomas DD, Sachs JN (2014) Open and closed conformations of the isolated transmembrane domain of death receptor 5 support a new model of activation. Biophys J 106(6):L21–L24. doi:10.1016/j.bpj.2014.01.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Winkel C, Neumann S, Surulescu C, Scheurich P (2012) A minimal mathematical model for the initial molecular interactions of death receptor signalling. Math Biosci Eng 9(3):663–683. doi:10.3934/mbe.2012.9.663

    Article  PubMed  Google Scholar 

  165. Lee HW, Lee SH, Lee HW, Ryu YW, Kwon MH, Kim YS (2005) Homomeric and heteromeric interactions of the extracellular domains of death receptors and death decoy receptors. Biochem Biophys Res Commun 330(4):1205–1212. doi:10.1016/j.bbrc.2005.03.101

    Article  CAS  PubMed  Google Scholar 

  166. Lalaoui N, Morle A, Merino D, Jacquemin G, Iessi E, Morizot A, Shirley S, Robert B, Solary E, Garrido C, Micheau O (2011) TRAIL-R4 promotes tumor growth and resistance to apoptosis in cervical carcinoma HeLa cells through AKT. PLoS One 6(5):e19679. doi:10.1371/journal.pone.0019679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang XD, Franco AV, Nguyen T, Gray CP, Hersey P (2000) Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J Immunol 164(8):3961–3970

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Pollak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Danish, L., Stöhr, D., Scheurich, P., Pollak, N. (2017). TRAIL-R3/R4 and Inhibition of TRAIL Signalling in Cancer. In: Micheau, O. (eds) TRAIL, Fas Ligand, TNF and TLR3 in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-56805-8_2

Download citation

Publish with us

Policies and ethics