Skip to main content

Measuring Cytomechanical Forces on Growing Pollen Tubes

  • Chapter
  • First Online:

Abstract

Cytomechanical measurements are important to unravel the influence of the biochemical composition of the plant cell wall on growth, morphogenesis, and stability. Agronomical research has a great interest in cell wall mechanics because in an ideal situation, crop plants grow as fast and large as possible without loosing the strength to withstand destabilizing environmental influences. Pollen tubes provide a convenient system to study major aspects of cytomechanics. They grow extremely fast but expansion is restricted to the tip region, providing a cellular model where both biochemical and mechanical properties vary spatio-temporally along the cell. The path of the pollen tube from the stigma to the ovary is full of obstacles, which the pollen tube has to overcome to reach the ovule and achieve fertilization. Once an obstruction is sensed, it can be either circumvented or penetrated, which involves mechanosensing, signal transduction, internal physiological changes, and adaptation of the mechanical properties of the pollen tube. As a result, the pollen tube changes its growth direction or increases the pushing force, both of which are controlled by a fine-tuned interplay between turgor pressure and cell wall extensibility. In this chapter, we provide an overview of state-of-the-art methods to measure those two parameters, as well as an outlook on novel technical developments that will allow the precise evaluation of the mechanical properties of the cell wall along the length of the pollen tube.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agudelo CG, Nezhad AS, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip: a modular MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Bechinger C, Giebel KF, Schnell M, Leiderer P, Deising HB, Bastmeyer B (1999) Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285:1896–1899

    Article  CAS  PubMed  Google Scholar 

  • Beck WA (1929) Determining the osmotic value at incipient plasmolysis. Trans Am Microsc Soc 48:204–208

    Article  Google Scholar 

  • Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8

    Article  Google Scholar 

  • Berry PM, Sylvester-Bradley R, Berry S (2006) Ideotype design for lodging-resistant wheat. Euphytica 154:165–179

    Article  Google Scholar 

  • Beyeler F, Muntwyler S, Nelson B (2009) A six-axis MEMS force-torque sensor with micro-newton and nano-newtonmeter resolution. J Microelectromech Syst 18:433–441

    Article  CAS  Google Scholar 

  • Bolduc JF, Lewis LJ, Aubin CE, Geitmann A (2006) Finite-element analysis of geometrical factors in micro-indentation of pollen tubes. Biomech Model Mechan 5:227–236

    Article  Google Scholar 

  • Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147:1646–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burri JT, Hu C, Shamsudhin N, Wang X, Vogler H, Grossniklaus U, Nelson BJ (2016) Dual-axis cellular force microscope for mechanical characterization of living plant cells. In: Proceedings of 12th Conference on Automation Science and Engineering (CASE2016), Fort Worth, USA

    Google Scholar 

  • Chae K, Zhang K, Zhang L, Morikis D, Kim ST, Mollet JC, de la Rosa N, Tan K, Lord EM (2007) Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity. J Biol Chem 282:33,845–33,858

    Article  CAS  Google Scholar 

  • Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube–spatial distribution recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AY, Palanivelu R, Tang WH, Xue HW, Yang WC (2013) Pollen and plant reproduction biology: blooming from east to west. Mol Plant 6:995–997

    Article  CAS  PubMed  Google Scholar 

  • Ciampolini F, Cresti M, Sarfatti G, Tiezzi A (1981) Ultrastructure of the stylar canal cells of Citrus limon (Rutaceae). Plant Syst Evol 138:263–274

    Article  Google Scholar 

  • Clair B, Thibaut B, Ramonda M, Lévèque G, Arinero R (2003) Imaging the mechanical properties of wood cell wall layers by atomic force modulation microscopy. IAWA J 24:223–230

    Article  Google Scholar 

  • Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476

    Article  CAS  PubMed  Google Scholar 

  • Crook MJ, Ennos AR (1995) The effect of nitrogen and growth regulators on stem and root characteristics associated with lodging in two cultivars of winter wheat. J Exp Bot 46:931–938

    Article  CAS  Google Scholar 

  • De T, Chettoor AM, Agarwal P, Salapaka MV, Nettikadan S (2010) Immobilization method of yeast cells for intermittent contact mode imaging using the atomic force microscope. Ultramicroscopy 110:254–258

    Article  CAS  PubMed  Google Scholar 

  • Di Carlo D (2012) A mechanical biomarker of cell state in medicine. J Lab Autom 17:32–42

    Article  PubMed  Google Scholar 

  • Dimarco RD, Nice CC, Fordyce JA (2012) Family matters: effect of host plant variation in chemical and mechanical defenses on a sequestering specialist herbivore. Oecologia 170:687–693

    Article  PubMed  Google Scholar 

  • Elleman CJ, Franklin-Tong V, Dickinson HG (1992) Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes. New Phytol 121:413–424

    Article  Google Scholar 

  • Engelhardt H, Sackmann E (1988) On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields. Biophys J 54:495–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favre M, Polesel-Maris J, Overstolz T, Niedermann P, Dasen S, Gruener G, Ischer R, Vettiger P, Liley M, Heinzelmann H, Meister A (2011) Parallel AFM imaging and force spectroscopy using two-dimensional probe arrays for applications in cell biology. J Mol Recognit 24:446–452

    Article  CAS  PubMed  Google Scholar 

  • Felekis D, Muntwyler S, Vogler H, Beyeler F, Grossniklaus U, Nelson B (2011) Quantifying growth mechanics of living growing plant cells in situ using microrobotics. Micro Nano Lett 6:311–316

    Article  CAS  Google Scholar 

  • Felekis D, Vogler H, Grossniklaus U, Nelson BJ (2015a) Microrobotic tools for plant biology. In: Micro- and nanomanipulation tools. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp 283–306

    Google Scholar 

  • Felekis D, Vogler H, Mecja G, Muntwyler S, Nestorova A, Huang T, Sakar MS, Grossniklaus U, Nelson BJ (2015b) Real-time automated characterization of 3D morphology and mechanics of developing plant cells. Int J Rob Res 34:1136–1146

    Google Scholar 

  • Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J For Res 33:612–623

    Article  Google Scholar 

  • Fernandes A, Chen X, Scotchford C, Walker J, Wells D, Roberts C, Everitt N (2012) Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study. Phys Rev E 85:021,916

    Article  Google Scholar 

  • Flintham JE, Börner A, Worland AJ, Gale MD (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci 128:11–25

    Article  Google Scholar 

  • Forouzesh E, Goel A, Mackenzie SA, Turner JA (2013) In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling. Plant J 73:509–520

    Article  CAS  PubMed  Google Scholar 

  • Geitmann A, Parre E (2004a) The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sex Plant Reprod 17:9–16

    Google Scholar 

  • Geitmann A, Parre E (2004b) The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sex Plant Reprod 17:9–16

    Google Scholar 

  • Geitmann A, McConnaughey W, Lang-Pauluzzi I, Franklin-Tong VE, Emons AMC (2004) Cytomechanical properties of Papaver pollen tubes are altered after self-incompatibility challenge. Biophys J 86:3314–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng T, Bredeweg EL, Szymanski CJ, Liu B, Baker SE, Orr G, Evans JE, Kelly RT (2015) Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics. Sci Rep 5:16,111

    Article  CAS  Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416

    Article  CAS  PubMed  Google Scholar 

  • Green PB (1968) Growth physics in Nitella: a method for continuous in vivo analysis of extensibility based on a micro-manometer technique for turgor pressure. Plant Physiol 43:1169–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  • Heilbronn A (1914) Zustand des Plasmas und Reizbarkeit. Ein Beitrag zur Physiologie der lebenden Substanz. Jahrb wiss Botan 54:357–390

    CAS  Google Scholar 

  • Ho JC, Ueda J, Shimizu T (2016) The impact of mechanical stress on stem cell properties: the link between cell shape and pluripotency. Histol Histopathol 31:41–50

    PubMed  Google Scholar 

  • Hülskamp M, Schneitz K, Pruitt R (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Husken D, Steudle E, Zimmermann U (1978) Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol 61:158–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauh GY, Lord EM (1996) Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination. Planta 199:251–261

    Article  CAS  Google Scholar 

  • Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kailas L, Ratcliffe E, Hayhurst E, Walker M, Foster S, Hobbs J (2009) Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 109:775–780

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM (2003) Chemocyanin a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci USA 100:16,125–16,130

    Article  CAS  Google Scholar 

  • Kim MS, Pratt JR, Brand U, Jones CW (2011) Report on the first international comparison of small force facilities: a pilot study at the micronewton level. Metrologia 49:70–81

    Article  Google Scholar 

  • Lesniewska E, Adrian M, Klinguer A, Pugin A (2004) Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy. Ultramicroscopy 100:171–178

    Article  CAS  PubMed  Google Scholar 

  • Lintilhac PM, Wei C, Tanguay JJ, Outwater JO (2000) Ball tonometry: a rapid, nondestructive method for measuring cell turgor pressure in thin-walled plant cells. J Plant Growth Regul 19:90–97

    Article  CAS  PubMed  Google Scholar 

  • Lord EM, Kohorn LU (1986) Gynoecial development, pollination, and the path of pollen tube growth in the tepary bean, Phaseolus acutifolius. Am J Bot 73:70–78

    Article  Google Scholar 

  • Luu DT, Marty-Mazars D, Trick M, Dumas C, Heizmann P (1999) Pollen-stigma adhesion in Brassica spp involves SLG and SLR1 glycoproteins. Plant Cell 11:251–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messerli MA, Robinson KR (2003) Ionic and osmotic disruptions of the lily pollen tube oscillator: testing proposed models. Planta 217:147–57

    CAS  PubMed  Google Scholar 

  • Milani P, Gholamirad M, Traas J, Arnéodo A, Boudaoud A, Argoul F, Hamant O (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi M (1895) Die Durchbohrung von Membranen durch Pilzfäden. Jahrb Wissensch Bot 28:269–289

    Google Scholar 

  • Mollet JC, Park SY, Nothnagel EA, Lord EM (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollet JC, Leroux C, Dardelle F, Lehner A (2013) Cell wall composition biosynthesis and remodeling during pollen tube growth. Plants 2:107–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Money NP (2007) Biomechanics of invasive hyphal growth. In: Howard RJ, Gow NAR (eds) Biology of the fungal cell. Springer, Berlin/Heidelberg, pp 237–249

    Chapter  Google Scholar 

  • Muntwyler S, Beyeler F, Nelson BJ (2009) Three-axis micro-force sensor with sub-micro-newton measurement uncertainty and tunable force range. J Micromech Microeng 20:025,011

    Article  Google Scholar 

  • Nagelkerke A, Bussink J, Rowan AE, Span P (2015) The mechanical microenvironment in cancer: how physics affects tumours. Semin Cancer Biol 35:62–70

    Article  PubMed  Google Scholar 

  • Ng L, Hung HH, Sprunt A, Chubinskaya S, Ortiz C, Grodzinsky A (2007) Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix. J Biomech 40:1011–1023

    Article  PubMed  Google Scholar 

  • Nili A, Yi H, Crespi VH, Puri VM (2015) Examination of biological hotspot hypothesis of primary cell wall using a computational cell wall network model. Cellulose 22:1027–1038

    Article  CAS  Google Scholar 

  • Nilsson J, Evander M, Hammarström B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649:141–157

    Article  CAS  PubMed  Google Scholar 

  • Nye PH (1966) The effect of the nutrient intensity and buffering power of a soil and the absorbing power, size and root hairs of a root, on nutrient absorption by diffusion. Plant Soil 25:81–105

    Article  CAS  Google Scholar 

  • Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    Article  CAS  PubMed  Google Scholar 

  • Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parre E, Geitmann A (2005a) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Google Scholar 

  • Parre E, Geitmann a (2005b) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Luque A (2013) Haustorium invasion into host tissues. In: Parasitic Orobanchaceae. Springer Science + Business Media, New York, pp 75–86

    Chapter  Google Scholar 

  • Pertl H, Pockl M, Blaschke C, Obermeyer G (2010) Osmoregulation in Lilium pollen grains occurs via modulation of the plasma membrane H+ ATPase activity by 14-3-3 proteins. Plant Physiol 154:1921–1928

    Google Scholar 

  • Radotic K, Roduit C, Simonovic J, Hornitschek P, Fankhauser C, Mutavdzic D, Steinbach G, Dietler G, Kasas S (2012) Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophys J 103:386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae AL, Harris PJ, Bacic A, Clarke AE (1985) Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes. Planta 166:128–133

    Article  CAS  PubMed  Google Scholar 

  • Rounds CM, Hepler PK, Winship LJ (2014) The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiol 166:139–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Routier-Kierzkowska AL, Smith RS (2013) Measuring the mechanics of morphogenesis. Curr Opin Plant Biol 16:25–32

    Article  PubMed  Google Scholar 

  • Routier-Kierzkowska AL, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C, Smith RS (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013) Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proc Natl Acad Sci USA 110:8093–8098

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders CS, Yang SY, Eun JS, Feuz DM, ZoBell DR (2015) Feeding a brown midrib corn silage-based diet to growing beef steers improves growth performance and economic returns. Can J Anim Sci Can J Anim Sci 95:625–631

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Schlupmann H, Bacic A, Read SM (1994) Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto. Plant Physiol 105:659–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamsudhin N, Atakan HB, Läubli N, Vogler H, Hu C, Sebastian A, Grossniklaus U, Nelson BJ (2016a) Probing the micromechanics of the fastest growing plant cell – the pollen tube. In: Proceedings in IEEE International Conference on Engineering in Medicine and Biology (EMBC2016), Orlando, USA

    Google Scholar 

  • Shamsudhin N, Läubli N, Atakan HB, Vogler H, Hu C, Häberle W, Sebastian A, Grossniklaus U, Nelson BJ (2016b) Massively parallelized pollen tube guidance and mechanical measurements on a lab-on-a-chip platform. PLoS One 11:e0168138

    Google Scholar 

  • Shawky JH, Davidson LA (2015) Tissue mechanics and adhesion during embryo development. Dev Biol 401:152–64

    Article  CAS  PubMed  Google Scholar 

  • Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518

    CAS  PubMed  Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Article  Google Scholar 

  • Sniadecki NJ, Anguelouch A, Yang MT, Lamb CM, Liu Z, Kirschner SB, Liu Y, Reich DH, Chen CS (2007) Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA 104:14,553–14,558

    Article  CAS  Google Scholar 

  • Sun Y, Wan KT, Roberts KP, Bischof JC, Nelson BJ (2003) Mechanical property characterization of mouse zona pellucida. IEEE Trans Nanobiosci 2:279–286

    Article  Google Scholar 

  • Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury regeneration and transport. Nat Methods 2:599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomos AD, Leigh RA (1999) The pressure probe: a versatile tool in plant cell physiology. Annu Rev Plant Physiol Plant Mol Biol 50:447–472

    Article  CAS  PubMed  Google Scholar 

  • Vanderwerff L, Ferraretto L, Shaver R (2015) Brown midrib corn shredlage in diets for high-producing dairy cows. J Dairy Sci 98:5642–5652

    Article  CAS  PubMed  Google Scholar 

  • Vogler H, Draeger C, Weber A, Felekis D, Eichenberger C, Routier-Kierzkowska AL, Boisson-Dernier A, Ringli C, Nelson BJ, Smith RS, Grossniklaus U (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627

    Article  CAS  PubMed  Google Scholar 

  • de Vries H (1884) Eine Methode zur Analyse der Turgorkraft. Bernstein, Berlin

    Google Scholar 

  • Weber A, Braybrook S, Huflejt M, Mosca G, Routier-Kierzkowska AL, Smith RS (2015) Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments. J Exp Bot 66:3229–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C (2001) An insight into cell elasticity and load-bearing ability. Measurement and theory. Plant Physiol 126:1129–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright GD, Arlt J, Poon WC, Read ND (2007) Optical tweezer micromanipulation of filamentous fungi. Fungal Genet Biol 44:1–13

    Article  PubMed  Google Scholar 

  • Wu J, Lin Y, Zhang XL, Pang DW, Zhao J (2008) IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. J Exp Bot 59:2529–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarbrough JM, Himmel ME, Ding SY (2009) Plant cell wall characterization using scanning probe microscopy techniques. Biotechnol Biofuels 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21:054,018

    Article  Google Scholar 

  • Yoshida S, Cui S, Ichihashi Y, Shirasu K (2016) The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67:643–667

    Article  CAS  PubMed  Google Scholar 

  • Zamir EA, Taber LA (2004) On the effects of residual stress in microindentation tests of soft tissue structures. J Biomech Eng 126:276–283

    Article  PubMed  Google Scholar 

  • Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85:179–192

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Crespi VH, Kubicki JD, Cosgrove DJ, Zhong L (2014) Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose 21:1025–1039

    Article  CAS  Google Scholar 

  • Zonia L, Munnik T (2008) Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J Exp Bot 59:861–873

    Article  CAS  PubMed  Google Scholar 

  • Zonia L, Müller M, Munnik T (2006) Hydrodynamics and cell volume oscillations in the pollen tube apical region are integral components of the biomechanics of Nicotiana tabacum pollen tube growth. Cell Biochem Biophys 46:209–232

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Vogler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vogler, H., Shamsudhin, N., Nelson, B.J., Grossniklaus, U. (2017). Measuring Cytomechanical Forces on Growing Pollen Tubes. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_4

Download citation

Publish with us

Policies and ethics