Skip to main content

Salinity Influences Single Glucosinolate Content in the Halophyte Lepidium latifolium

  • Conference paper
  • First Online:
Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects

Abstract

The influence of salinity on the biosynthesis of secondary metabolites with a focus on single glucosinolates (GSLs) was investigated in Lepidium latifolium L., which is a plant species rich in antioxidants. Mature plants were subjected to 0, 15, 22.5, and 35 Practical Salinity Units (PSU) for 1–4 weeks. While phenols, flavonoids, and the oxygen radical absorbance capacity (ORAC) increased with increasing salinity, the ascorbate concentration did not follow a specific pattern. The concentration of single GSLs was influenced by salinity in different ways: While the concentration of aliphatic GSLs like glucoiberin and sinigrin increased, the concentration of aromatic GSLs such as glucobrassicin decreased under salinity stress. Salinity increased the total GSL concentration significantly with sinigrin being the major contributing GSL. The exact molecular role of the different GSLs in abiotic stress defense needs further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1403–1415

    Article  CAS  PubMed  Google Scholar 

  • Bloem E, Haneklaus S, Kleinwächter M, Paulsen J, Schnug E, Selmar D (2014) Stress-induced changes of bioactive compounds in Tropaeolum majus L. Ind Crop Prod 60:349–359

    Article  CAS  Google Scholar 

  • Boestfleisch C, Wagenseil NB, Buhmann AK, Seal CE, Wade EM, Muscolo A, Papenbrock J (2014) Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants 6:1–16

    Article  Google Scholar 

  • Cabello-Hurtado F, Gicquel M, Esnault M-A (2012) Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolate content perspective. Food Chem 132:1003–1009

    Article  CAS  Google Scholar 

  • del Carmen M-BM, Moreno D, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14:11607–11625

    Article  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Department of Soils and Plant Nutrition, California University, Davis

    Google Scholar 

  • Francis A, Warwick SI (2007) The biology of invasive alien plants in Canada. 8. Lepidium latifolium L. Can J Plant Sci 87:639–658

    Article  Google Scholar 

  • Gupta SM, Pandey P, Negi PS, Pande V, Grover A, Patade VY, Ahmed Z (2013) DRE-binding transcription factor gene (LlaDREB1b) is regulated by various abiotic stresses in Lepidium latifolium L. Mol Biol Rep 40:2573–2580

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJ (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, Thage JH (1996) Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crop Res 47:93–105

    Article  Google Scholar 

  • Kaur T, Hussain K, Koul S, Vishwakarma R, Vyas D (2013) Evaluation of nutritional and antioxidant status of Lepidium latifolium Linn.: a novel phytofood from Ladakh. PLoS One 8:e69112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MAM, Ulrichs C, Mewis I (2010) Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae. Entomol Exp Appl 137:229–236

    Article  CAS  Google Scholar 

  • López-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174:321–328

    Article  Google Scholar 

  • López-Berenguer C, Martínez-Ballesta MC, Moreno DA, Carvajal M, García-Viguera C (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57:572–578

    Article  PubMed  Google Scholar 

  • Manici LM, Lazzeri L, Palmieri S (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45:2768–2773

    Article  CAS  Google Scholar 

  • Mewis I, Khan MAM, Glawischnig E, Schreiner M, Ulrichs C (2012) Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.) PLoS One 7:e48661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro E, Alonso J, Rodriguez R (1994) Diuretic action of an aqueous extract of Lepidium latifolium L. J Ethnopharmacol 41:65–69

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glucosinolate: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Qasim M, Ashraf M, Ashraf MY, Rehman S-U, Rha ES (2003) Salt-induced changes in two canola cultivars differing in salt tolerance. Biol Plant 46:629–632

    Article  Google Scholar 

  • Radovich TJK, Kleinhenz MD, Streeter JG (2005) Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J Am Soc Hortic Sci 130:943–949

    CAS  Google Scholar 

  • Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: Gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Robbins RJ, Keck A, Banuelos G, Finley JW (2005) Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. J Med Food 8:204–214

    Article  CAS  PubMed  Google Scholar 

  • Schreiner M, Beyene B, Krumbein A, Stützel H (2009) Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. J Agric Food Chem 57:7259–7263

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha A, Dubey R (2010) Oxidative stress and antioxidative defense systems in plants growing under abiotic stresses. In: Handbook of plant and crop stress. Taylor & Francis, Boca Raton, pp 89–138

    Google Scholar 

  • Thies W (1979) Detection and utilization of a glucosinolate sulfohydrolase in the edible snail, Helix pomatia. Naturwissenschaften 66:364–365

    Article  CAS  Google Scholar 

  • Tierens KFM-J, Thomma BP, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BP, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Y, Gabriel-Neumann E, Ngwene B, Krumbein A, George E, Platz S, Rohn S, Schreiner M (2014) Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots. Food Chem 152:190–196

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019

    Article  CAS  Google Scholar 

  • Zaghdoud C, Alcaraz-López C, Mota-Cadenas C, Martínez-Ballesta MDC, Moreno D, Ferchichi A, Carvajal M (2012) Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement. Sci World J 2012:1–12

    Article  Google Scholar 

  • Zhao K, Song J, Feng G, Zhao M, Liu J (2010) Species, types, distribution, and economic potential of halophytes in China. Plant Soil 342:495–509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Papenbrock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Boestfleisch, C., Hornbacher, J., Rumlow, A., Papenbrock, J. (2017). Salinity Influences Single Glucosinolate Content in the Halophyte Lepidium latifolium . In: De Kok, L., Hawkesford, M., Haneklaus, S., Schnug, E. (eds) Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-56526-2_10

Download citation

Publish with us

Policies and ethics