Skip to main content

Classical Field Theory

  • Chapter
  • First Online:
Mathematical Methods of Classical Physics

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 1843 Accesses

Abstract

A second cornerstone of classical physics besides point-particle mechanics is field theory. Classical field theory is essentially an infinite collection of mechanical systems (one at each point in space) and hence can be viewed as an infinite-dimensional generalization of classical mechanics. More precisely, solutions of classical mechanical systems are smooth curves \(t\mapsto \gamma (t)\) from \(\mathbb {R}\) to M. In classical field theory, curves from \(\mathbb {R}\) are replaced by maps from a higher-dimensional source manifold. In this more general framework we also allow for Lagrangians with explicit time dependence. Another key feature of classical field theory is its manifest incorporation of the laws of Einstein’s theory of relativity. This chapter begins with definitions and properties of the central objects, namely fields, Lagrangians, action functionals, and the field-theoretic version of the Euler–Lagrange equations. Modern covariant field theory is customarily formulated in the language of jet bundles, which is also utilized and thus introduced here. We study symmetries and conservation laws of classical field theories in the second part of this chapter, which culminates in the field-theoretic version of Noether’s theorem. The penultimate section is devoted to a thorough presentation, from a mathematical perspective, of some prominent examples of classical field theories, such as sigma models, Yang–Mills theory, and Einstein’s theory of gravity. A key ingredient of matter-coupled Einstein gravity is the energy-momentum tensor, which is studied in detail in the final section. This chapter is largely based on Ref. [16] (Olver Applications of Lie groups to differential equations, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in the definition of f, we did not use any coordinates.

  2. 2.

    This is to be understood in the sense that it generalizes the kinetic term in the standard Lagrangian (2.4) of classical mechanics.

  3. 3.

    Recall that a compact subgroup of a Lie group is automatically a Lie subgroup.

  4. 4.

    We remark that in some texts the definition of the Lagrangian in gravity theories differs by a factor of \(\sqrt{|\det (g)|}\), namely \(\mathscr {L} = \sqrt{|\det (g)|}\, L\). This will be used below.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Cortés .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Cortés, V., Haupt, A.S. (2017). Classical Field Theory. In: Mathematical Methods of Classical Physics. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-56463-0_5

Download citation

Publish with us

Policies and ethics