Skip to main content

Onsager’s Variational Principle in Soft Matter: Introduction and Application to the Dynamics of Adsorption of Proteins onto Fluid Membranes

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 577))

Abstract

Lipid bilayers are unique soft materials operating in general in the low Reynolds limit. While their shape is predominantly dominated by curvature elasticity as in a solid shell, their in-plane behavior is that of a largely inextensible viscous fluid. Furthermore, lipid membranes are extremely responsive to chemical stimuli. Because in their biological context they are continuously brought out-of-equilibrium mechanically or chemically, it is important to understand their dynamics. Here, we introduce Onsager’s variational principle as a general and transparent modeling tool for lipid bilayer dynamics. We introduce this principle with elementary examples, and then use it to study the sorption of curved proteins on lipid membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • S. Aimon, A. Callan-Jones, A. Berthaud, M. Pinot, G.E.S. Toombes, P. Bassereau, Membrane shape modulates transmembrane protein distribution. Dev. Cell 28(2), 212–218 (2014)

    Article  Google Scholar 

  • B. Antonny, Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80, 101–123 (2011)

    Article  Google Scholar 

  • M. Arroyo, A. DeSimone, Relaxation dynamics of fluid membranes. Phy. Rev. E 79, 031915 (2009)

    Article  MathSciNet  Google Scholar 

  • M. Arroyo, A. DeSimone, L. Heltai, The role of membrane viscosity in the dynamics of fluid membranes. arXiv 2007, 1–21 (2010)

    Google Scholar 

  • M. Arroyo, L. Heltai, D. Millán, A. DeSimone, Reverse engineering the euglenoid movement. Proc. Natl. Acad. Sci. U. S. A. 44, 17874–17879 (2012)

    Article  Google Scholar 

  • J.W. Barrett, H. Garcke, R. Nürnberg, A Stable Numerical Method for the Dynamics of Fluidic Membranes, vol. 134 (Springer, Berlin, 2016)

    MATH  Google Scholar 

  • M. Breidenich, R.R. Netz, R. Lipowsky, The shape of polymer-decorated membranes. 49, 431–437 (2000)

    Google Scholar 

  • A. Callan-Jones, M. Durand, J.-B. Fournier, Hydrodynamics of bilayer membranes with diffusing transmembrane proteins. Soft Matter 12(6), 1791–1800 (2016)

    Article  Google Scholar 

  • R. Capovilla, J. Guven, Stresses in lipid membranes. J. Phy. A: Math. Gen. 35(30), 6233–6247 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Doi, Onsager’s variational principle in soft matter. J. Phys.: Condens. Matter 23(28), 284118 (2011)

    Google Scholar 

  • C.M. Elliott, B. Stinner, Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13(2), 325–360 (2013)

    Article  MathSciNet  Google Scholar 

  • M.B. Elowitz, M.G. Surette, P.E. Wolf, J.B. Stock, S. Leibler, Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181(1), 197–203 (1999)

    Google Scholar 

  • A. Embar, J. Dolbow, E. Fried, Microdomain evolution on giant unilamellar vesicles. Biomech. Model. Mechanobiol. 12(3), 597–615 (2013)

    Article  Google Scholar 

  • E. Evans, A. Yeung, Hidden dynamics in rapid changes of bilayer shape. Chem. Phy. Lipids 73(1–2), 39–56 (1994)

    Article  Google Scholar 

  • F. Feng, W.S. Klug, Finite element modeling of lipid bilayer membranes. J. Comput. Phys. 220(1), 394–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • P.J. Flory, Thermodynamics of high polymer solutions. J. Chem. Phys. 10(1), 51–61 (1942)

    Article  Google Scholar 

  • J.-B. Fournier, N. Khalifat, N. Puff, M.I. Angelova, Chemically triggered ejection of membrane tubules controlled by intermonolayer friction. Phys. Rev. Lett. 102(1), 018102 (2009)

    Article  Google Scholar 

  • J.B. Fournier, On the hydrodynamics of bilayer membranes. Int. J. Non-Linear Mech. 75, 67–76 (2015)

    Article  Google Scholar 

  • H. Goldstein, Classical Mechanics, World student series (Addison-Wesley, Reading, 1980)

    MATH  Google Scholar 

  • W.T. Góźdź, Shape transformation of lipid vesicles induced by diffusing macromolecules. J. Chem. Phys. 134(2) (2011)

    Google Scholar 

  • J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, vol. 1 (Springer Science & Business Media, 2012)

    Google Scholar 

  • M. Heinrich, A. Tian, C. Esposito, T. Baumgart, Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. Proc. Natl. Acad. Sci. U. S. A. 107(16), 7208–7213 (2010a)

    Article  Google Scholar 

  • M.C. Heinrich, B.R. Capraro, A. Tian, J.M. Isas, R. Langen, T. Baumgart, Quantifying membrane curvature generation of drosophila amphiphysin N-BAR domains. J. Phys. Chem. Lett. 1(23), 3401–3406 (2010b)

    Article  Google Scholar 

  • W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c, 693–703 (1973)

    Google Scholar 

  • M.L. Huggins, Solutions of long chain compounds. J. Chem. Phys. 9(5), 440–440 (1941)

    Article  Google Scholar 

  • R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • F. Jülicher, R. Lipowsky, Domain-induced budding of vesicles. Phys. Rev. Lett. 70(19), 2964–2967 (1993)

    Article  Google Scholar 

  • N. Khalifat, N. Puff, S. Bonneau, J.-B. Fournier, M.I. Angelova, Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics. Biophys. J. 95(10), 4924–4933 (2008)

    Article  Google Scholar 

  • N. Khalifat, M. Rahimi, A.-F. Bitbol, M. Seigneuret, J.-B. Fournier, N. Puff, M. Arroyo, M.I. Angelova, Interplay of packing and flip-flop in local bilayer deformation. How phosphatidylglycerol could rescue mitochondrial function in a cardiolipin-deficient yeast mutant. Biophys. J. 107(4), 879–890 (2014)

    Article  Google Scholar 

  • A.J. Kosmalska, L. Casares, A. Elosegui-Artola, J.J. Thottacherry, R. Moreno-Vicente, V. González-Tarragó, M.Á. del Pozo, S. Mayor, M. Arroyo, D. Navajas, X. Trepat, N.C. Gauthier, P. Roca-Cusachs, Physical principles of membrane remodelling during cell mechanoadaptation. Nat. Commun. 6, 7292 (2015)

    Article  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, vol. 6 (Elsevier, Amsterdam, 2013)

    Google Scholar 

  • A. Lew, J.E. Marsden, M. Ortiz, M. West, Variational time integrators. Int. J. Numer. Meth. Eng. 60(1), 153–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Lipowsky, The conformation of membranes. Nature 349(6309), 475–481 (1991)

    Article  Google Scholar 

  • R. Lipowsky, Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013)

    Article  Google Scholar 

  • J. Liu, Y. Sun, D.G. Drubin, G.F. Oster, The mechanochemistry of endocytosis. PLoS Biol. 7(9), e1000204 (2009)

    Article  Google Scholar 

  • R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces, vol. 3 (Wiley, New York, 1996)

    Google Scholar 

  • H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068), 590–596 (2005)

    Article  Google Scholar 

  • A. Mielke, A gradient structure for reactiondiffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329–1346 (2011a). doi:10.1088/0951-7715/24/4/016. ISSN 0951-7715

  • A. Mielke, On thermodynamically consistent models and gradient structures for thermoplasticity. GAMM Mitt. 34(1), 51–58 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discrete Continuous Dyn. Syst. - Ser. S 6(2), 479–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • L. Onsager, Irreversible processes. Phys. Rev. 37, 237–241 (1931a)

    Article  MathSciNet  MATH  Google Scholar 

  • L. Onsager, Reciprocal relations in irreversible processes I. Phys. Rev. 37(4), 405–426 (1931b)

    Article  MATH  Google Scholar 

  • M. Ortiz, E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • H.C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, New York, 2005)

    Book  Google Scholar 

  • F. Otto, The geometry of dissipative evolution equations: The porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Pauli, C.P. Enz, Thermodynamics and the kinetic theory of gases, vol. 3 (Courier Corporation, 2000)

    Google Scholar 

  • C. Peco, A. Rosolen, M. Arroyo, An adaptive meshfree method for phase-field models of biomembranes. Part II: A Lagrangian approach for membranes in viscous fluids. J. Comput. Phys. 249, 320–336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • M.A. Peletier, Variational modelling: energies, gradient flows, and large deviations, February 2014

    Google Scholar 

  • C. Prévost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A. Callan-Jones, P. Bassereau, IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat. Commun. 6, 8529 (2015)

    Article  Google Scholar 

  • I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience Publishers, 1967)

    Google Scholar 

  • M. Rahimi, M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Phys. Rev. E 86(1), 011932 (2012)

    Article  Google Scholar 

  • M. Rahimi, A. DeSimone, M. Arroyo, Curved fluid membranes behave laterally as effective viscoelastic media. Soft Matter 9(46), 11033 (2013)

    Article  Google Scholar 

  • S. Ramadurai, A. Holt, V. Krasnikov, G. van den Bogaart, J.A. Killian, B. Poolman, Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 13135, 12650–12656 (2009)

    Article  Google Scholar 

  • P. Rangamani, A. Agrawal, K.K. Mandadapu, G. Oster, D.J. Steigmann, Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomech. Model. Mechanobiol. 12(4), 833–845 (2013)

    Article  Google Scholar 

  • R. Rangarajan, H. Gao, A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications. J. Comput. Phys. 297, 266–294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Rayleigh, Proc. Math. Soc. London 363, 357 (1873)

    Google Scholar 

  • D.S. Rodrigues, R.F. Ausas, F. Mut, G.C. Buscaglia, Numerical modeling of tether formation in viscous. XXXII, 19–22 (2013)

    Google Scholar 

  • A. Rustom, R. Saffrich, I. Markovic, P. Walther, H.-H. Gerdes, Nanotubular highways for intercellular organelle transport. Sci. (New York, N.Y.) 303(5660), 1007–1010 (2004)

    Article  Google Scholar 

  • P.G. Saffman, M. Delbruck, Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U. S. A. 72(8), 3111–3113 (1975)

    Google Scholar 

  • R.A. Sauer, T.X. Duong, K. Mandadapu, D. Steigmann, A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J. Comput. Phys. 330, 1–19 (2017)

    Google Scholar 

  • U. Seifert, S.A. Langer, Viscous modes of fluid bilayer membranes. Europhys. Lett. (EPL) 23(1), 71–76 (1993)

    Article  Google Scholar 

  • U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys. (1997). July 2011

    Google Scholar 

  • P. Sens, L. Johannes, P. Bassereau, Biophysical approaches to protein-induced membrane deformations in trafficking. Curr. Opin. Cell Biol. 20(4), 476–482 (2008)

    Article  Google Scholar 

  • Z. Shi, T. Baumgart, Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. Commun. 6, 5974 (2015). May 2014

    Article  Google Scholar 

  • Y. Shibata, H. Junjie, M.M. Kozlov, T.A. Rapoport, Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev. Biol. 25, 329–354 (2009)

    Article  Google Scholar 

  • P. Singh, P. Mahata, T. Baumgart, S.L. Das, Curvature sorting of proteins on a cylindrical lipid membrane tether connected to a reservoir. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 85(5), 1–10 (2012)

    Article  Google Scholar 

  • B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R.V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R.G. Parton, G. Raposo, P. Sens, C. Lamaze, P. Nassoy, Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3), 402–413 (2011)

    Article  Google Scholar 

  • B. Sorre, A. Callan-Jones, J.-B. Manneville, P. Nassoy, J.-F. Joanny, J. Prost, B. Goud, P. Bassereau, Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl. Acad. Sci. U. S. A. 106(14), 5622–5626 (2009)

    Article  Google Scholar 

  • B. Sorre, A. Callan-Jones, J. Manzi, B. Goud, J. Prost, P. Bassereau, A. Roux, Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc. Natl. Acad. Sci. U. S. A. 109(1), 173–178 (2012)

    Article  Google Scholar 

  • H. Sprong, P. van der Sluijs, G. van Meer, How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2(7), 504–513 (2001)

    Article  Google Scholar 

  • J.C. Stachowiak, E.M. Schmid, C.J. Ryan, H.S. Ann, D.Y. Sasaki, M.B. Sherman, P.L. Geissler, D.A. Fletcher, C.C. Hayden, Membrane bending by proteinprotein crowding. Nat. Cell Biol. 14(9), 944–949 (2012)

    Article  Google Scholar 

  • M. Staykova, M. Arroyo, M. Rahimi, H.A. Stone, Confined bilayers passively regulate shape and stress. Phys. Rev. Lett. 110, 028101 (2013)

    Article  Google Scholar 

  • D.J. Steigmann, On the relationship between the Cosserat and Kirchhoff-Love theories of elastic shells. Math. Mech. Solids 4, 275–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Terasaki, T. Shemesh, N. Kasthuri, R.W. Klemm, R. Schalek, K.J. Hayworth, A.R. Hand, M. Yankova, G. Huber, J.W. Lichtman, T.A. Rapoport, M.M. Kozlov, Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154(2), 285–296 (2013)

    Article  Google Scholar 

  • Z.C. Tu, Z.C. Ou-Yang, A geometric theory on the elasticity of bio-membranes. J. Phys. A: Math. Gen. 37(47), 11407–11429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Yamaguchi, T. Mizutani, K. Kawabata, H. Haga, Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin \(\beta \)1 and PI3K. Sci. Rep. 5, 7656 (2015)

    Article  Google Scholar 

  • C. Zhu, S.L. Das, T. Baumgart, Nonlinear sorting, curvature generation, and crowding of endophilin N-BAR on tubular membranes. Biophys. J. 102(8), 1837–1845 (2012)

    Article  Google Scholar 

  • J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7(1), 9–19 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marino Arroyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Arroyo, M., Walani, N., Torres-Sánchez, A., Kaurin, D. (2018). Onsager’s Variational Principle in Soft Matter: Introduction and Application to the Dynamics of Adsorption of Proteins onto Fluid Membranes. In: Steigmann, D. (eds) The Role of Mechanics in the Study of Lipid Bilayers. CISM International Centre for Mechanical Sciences, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-56348-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56348-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56347-3

  • Online ISBN: 978-3-319-56348-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics