Skip to main content

Abstract

Many countries have developed their own systems for projecting forest resources and wood availability. Although studies using these tools are helpful for developing national policies, they do not provide a consistent assessment for larger regions such as the European Union or Europe as a whole. Individual national-scale studies differ considerably in timing, underlying methodology and scenarios, and reports are not issued for all countries in the region. However, a clear demand for consistent projections at European scale still remains. This chapter describes the resource simulators and forest sector models EFISCEN, EFDM, CBM-CFS3, and GLOBIOM/G4M that can all be applied to individual European countries, as well as to Europe as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also: www.iiasa.ac.at/G4M

  2. 2.

    See also: www.iiasa.ac.at./GLOBIOM

  3. 3.

    The term “unmanaged forests” refers to all forest areas that do currently not contribute to wood supply , based on economic decision rules in the model. However, they may still be a source for collection and production of non-wood goods (e.g. food, wild game, ornamental plants). Forests that are used in a certain period to meet the wood demand , so-called managed forests, are modelled to be managed for woody biomass production . This implies a certain rotation time, thinning events and final harvest.

  4. 4.

    Commercial roundwood is stemwood that is suitable for industrial roundwood (sawlogs, pulplogs and other industrial roundwood). Harvest losses and non-commercial roundwood are stemwood that is unsuitable for industrial roundwood. The difference between harvest losses and non-commercial roundwood is that the former has unwanted stemwood sizes, while the latter has unwanted wood characteristics.

References

  • Böttcher H, Verkerk PJ, Gusti M et al (2012) Projection of the future EU forest CO2 sink as affected by recent bioenergy policies using two advanced forest management models. GCB Bioenergy 4:773–783

    Article  Google Scholar 

  • Boudewyn P, Song X, Magnussen S, Gillis MD (2007) Model-based, volume-to-biomass conversion for forested and vegetated land in Canada. Canadian Forest Service, Victoria, Canada (Inf. Rep. BC-X-411) http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/27434.pdf Accessed 20 Sept 2016

  • Cramer W, Kicklighter DW, Bondeau A et al (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Chang Biol 5:1–15

    Article  Google Scholar 

  • Crouzat E, Mouchet M, Turkelboom F et al (2015) Assessing bundles of ecosystem services from regional to landscape scale: insights from the French Alps. J Appl Ecol 52:1145–1155

    Article  Google Scholar 

  • Edwards DM, Jay M, Jensen FS et al (2012) Public preferences across Europe for different forest stand types as sites for recreation. Ecol Soc 17(1):27. doi:10.5751/ES-04520-170127

    Article  Google Scholar 

  • Eggers T (2002) The impacts of manufacturing and utilisation of wood products on the European carbon budget. European Forest Institute, Joensuu

    Google Scholar 

  • Elbersen B, Staritsky I, Hengeveld GM et al (2012) Atlas of EU biomass potentials. Deliverable 3.3: Spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources. Biomass Futures http://www.biomassfutures.eu/work_packages/WP3%20Supply/D_3_3__Atlas_of_technical_and_economic_biomass_potential_FINAL_Feb_2012.pdf. Accessed 20 Sept 2016

  • European Commission (2013) EU energy, transport and GHG emissions: trends to 2050. Scenario, Reference

    Google Scholar 

  • FOREST EUROPE (2011) State of Europe’s Forests 2011

    Google Scholar 

  • FOREST EUROPE (2015) State of Europe’s Forests 2015

    Google Scholar 

  • Forsell N, Korosuo A, Havlík P et al (2016) Study on impacts on resource efficiency of future EU demand for bioenergy. Task 3: modelling of impacts of an increased EU bioenergy demand on biomass production, use and prices, 109p

    Google Scholar 

  • Frank S, Schmid E, Havlík P et al (2015) The dynamic soil organic carbon mitigation potential of European cropland. Glob Environ Chang 35:269–278

    Article  Google Scholar 

  • Global Forest Resources Assessment (2010) Global Forest Resources Assessment, main report. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Groen TA, Verkerk PJ, Böttcher H et al (2013) What causes differences between national estimates of forest management carbon emissions and removals compared to estimates of large-scale models? Environ Sci Pol 33:222–232

    Article  CAS  Google Scholar 

  • Gusti M (2010) An algorithm for simulation of forest management decisions in the global forest model. Artif Intell N4:45–49

    Google Scholar 

  • Gusti M, Kindermann G (2011) An approach to modeling landuse change and forest management on a global scale. In: Kacprzyk J, Pina N, Filipe J (eds) SIMULTECH-2011. Proceedings of 1st international conference on simulation and modeling methodologies, technologies and applications, Noordwijkerhout, 29–31 July 2011: SciTePress – Science and Technology Publications, Setúbal, pp 180–185

    Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ et al (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207

    Article  Google Scholar 

  • Havlík P, Schneider UA, Schmid E et al (2011) Global land-use implications of first and second generation biofuel targets. Energ Policy 39:5690–5702

    Article  Google Scholar 

  • Havlík P, Valin H, Herrero M et al (2014) Climate change mitigation through livestock system transitions. Proc Natl Acad Sci 111:3709–3714

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrero M, Havlík P, Valin H et al (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci 110(52):20888–20893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindermann G, Obersteiner M, Sohngen B et al (2008a) Global cost estimates of reducing carbon emissions through avoided deforestation. PNAS 105:10302–10307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindermann GE, McCallum I, Fritz S, Obersteiner M (2008b) A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn 42(3):387

    Article  Google Scholar 

  • Kindermann G, Schorghuber S, Linkosalo T et al (2013) Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance Manag 8:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kull S, Kurz WA, Rampley G et al. (2011) Operational-scale carbon budget model of the Canadian Forest Sector (CBM-CFS3) Version 1.2: User’s guide. Canadian Forest Service, Northern Forestry Centre

    Google Scholar 

  • Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547

    Article  Google Scholar 

  • Kurz WA, Dymond CC, White TM et al (2009) CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504

    Article  Google Scholar 

  • Lauri P, Havlík P, Kindermann G et al (2014) Woody biomass energy potential in 2050. Energ Policy 66:19–31

    Article  Google Scholar 

  • Li Z, Kurz WA, Apps MJ, Beukema SJ (2003) Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can J For Res 33:126–136

    Article  Google Scholar 

  • Liski J, Palosuo T, Peltoniemi M, Sievänen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Model 189:168–182

    Article  CAS  Google Scholar 

  • McCollum D, Krey V, Kolp P et al (2014) Transport electrification: a key element for energy system transformation and climate stabilization. Clim Chang 123(3):651–664

    Article  Google Scholar 

  • Meyer J, Vilén T, Peltoniemi M et al. (2005) Uncertainty estimate of the national level biomass and soil carbon stock and stock change. CarboInvent Project Deliverable 6.3

    Google Scholar 

  • Nabuurs GJ, Schelhaas MJ, Pussinen A (2000) Validation of the European Forest Information Scenario Model (EFISCEN) and a projection of Finnish forests. Silva Fenn 34(2):167–179. http://dx.doi.org/10.14214/sf.638

    Article  Google Scholar 

  • Nabuurs GJ, Goede DM, Michie B et al (2002) Long term international impacts of nature oriented forest management on European forests – an assessment with the EFISCEN model. J World Forest Resource Manag 9:101–129

    Google Scholar 

  • Nabuurs GJ, Pussinen A, van Brusselen J, Schelhaas MJ (2007) Future harvesting pressure on European forests. Eur J For Res 126:391–400

    Article  Google Scholar 

  • Nabuurs GJ, Schelhaas MJ, Hendriks CMA, Hengeveld GM (2014) Can European forests meet the demands of the bioeconomy in the future? Wood supply alongside environmental services. In: Innes J, Nikolakis W (eds) Forests and globalization: challenges and opportunities for sustainable development. The Earthscan Forest Library, Routledge, Oxon/New-York

    Google Scholar 

  • Nilsson S, Sallnäs O, Duinker P (1992) A report on the IIASA forest study: future forest resources of Western and Eastern Europe. The Parthenon Publishing Group, Carnforth

    Google Scholar 

  • Nuutinen T, Kellomäki S (2001) A comparison of three modelling approaches for largescale forest scenario analysis in Finland. Silva Fenn 35(3):299–308

    Article  Google Scholar 

  • Oosterbaan A, van den Berg CA, Schelhaas MJ (2007) Ontwikkelingen in vraag en aanbod van rondhout in Nederland en aangrenzend gebied en mogelijke knelpunten en kansen voor de bos- en houtsector in de periode 2005–2025. Alterra rapport 1510, Wageningen

    Google Scholar 

  • Packalen T, Sallnäs O, Sirkiä S et al (2014) The European Forestry Dynamics Model: concept, design and results of first case studies. Publications Office of the European Union, EUR 27004. doi:10.2788/153990

    Google Scholar 

  • Pilli R, Grassi G, Kurz WA et al (2013) Application of the CBM-CFS3 model to estimate Italy’s forest carbon budget, 1995–2020. Ecol Model 266:144–171

    Article  CAS  Google Scholar 

  • Pilli R, Grassi G, Cescatti A (2014a) Historical analysis and modeling of the forest carbon dynamics using the Carbon Budget Model: an example for the Trento Province (NE, Italy) – in Italian, with summary in English. Forest@ 11:20–35

    Article  Google Scholar 

  • Pilli R, Grassi G, Moris JV, Kurz WA (2014b) Assessing the carbon sink of afforestation with the Carbon Budget Model at the country level: an example for Italy. iForest 8:410–421

    Article  Google Scholar 

  • Pilli R, Grassi G, Kurz WA et al (2016a) Modelling forest carbon stock changes as affected by harvest and natural disturbances. I. Comparison with countries’ estimates for forest management. Carbon Balance Manag 11:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Pilli R, Grassi G, Kurz WA et al (2016b) Modelling forest carbon stock changes as affected by harvest and natural disturbances II. EU-level analysis. Carbon Balance Manag 11:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Pussinen A, Nabuurs GJ, Wieggers HJJ et al (2009) Modelling long-term impacts of environmental change on mid- and high-latitude European forests and options for adaptive forest management. Forest Ecol Manag 258:1806–1813

    Article  Google Scholar 

  • Reisinger A, Havlik P, Riahi K et al (2013) Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Clim Chang 117(4):677–690

    Article  Google Scholar 

  • Sallnäs O (1990) A matrix growth model of the Swedish forest. Stud For Suec 183:1–23

    Google Scholar 

  • Sallnäs O, Berger A, Räty M, Trubins M (2015) An area-based matrix model for uneven-aged forests. Forests 6:1500–1515. doi:10.3390/f6051500

    Article  Google Scholar 

  • Särkkä S (2013) Bayesian filtering and smoothing (PDF). Cambridge University Press. http://becs.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf

  • Schelhaas MJ, Eggers J, Lindner M et al. (2007) Model documentation for the European Forest Information Scenario model (EFISCEN 3.1). Alterra report 1559, Wageningen, EFI technical report 26, Joensuu

    Google Scholar 

  • Schelhaas MJ, Hengeveld G, Moriondo M et al (2010) Assessing risk and adaptation options to fires and windstorms in European forestry. Mitig Adapt Strateg 15:681–701. doi:10.1007/s11027-010-9243-0

    Article  Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Hengeveld GM et al (2015) Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Reg Environ Chang 15:1581–1594

    Article  Google Scholar 

  • Stinson G, Kurz WA, Smyth CE et al (2011) An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob Chang Biol 17:2227–2244

    Article  PubMed Central  Google Scholar 

  • Takayama T, Judge GG (1971) Spatial and temporal price and allocation models. North-Holland Publishing Company, Amsterdam/London

    Google Scholar 

  • UNECE/FAO (1953) European timber trends and prospects. FAO, Geneva

    Google Scholar 

  • UNECE/FAO (2005) European Forest Sector Outlook Study: main report. United Nations, Geneva, ECE/TIM/SP/20

    Google Scholar 

  • UNECE/FAO (2011). The European Forest Sector Outlook Study II (EFSOS II). 2010–2030. UNECE/FAO

    Google Scholar 

  • Verkerk PJ, Antilla P, Eggers J et al (2011) The realisable potential supply of woody biomass from forests in the European Union. Forest Ecol Manag 261:2007–2015

    Article  Google Scholar 

  • Verkerk H, Lindner M, Helming J et al (2014) Identification of pathways to consolidated visions of future land use in Europe. VOLANTE Deliverable 11:3

    Google Scholar 

  • Zamolodchikov DG, Grabovsky VI, Korovin GN, Kurz WA (2008) Assessment and projection of carbon budget in forests of Vologda Region using the Canadian model CBM-CFS Lesovedenie 6:3–14 (in Russian, with summary in English)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mart-Jan Schelhaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schelhaas, MJ. et al. (2017). Forest Resource Projection Tools at the European Level. In: Barreiro, S., Schelhaas, MJ., McRoberts, R., Kändler, G. (eds) Forest Inventory-based Projection Systems for Wood and Biomass Availability. Managing Forest Ecosystems, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-56201-8_4

Download citation

Publish with us

Policies and ethics