Skip to main content

Algorithmic Aspects of the Maximum Colorful Arborescence Problem

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10185))

  • 794 Accesses

Abstract

Given a vertex-colored arc-weighted directed acyclic graph G, the Maximum Colorful Subtree problem (or MCS) aims at finding an arborescence of maximum weight in G, in which no color appears more than once. The problem was originally introduced in [2] in the context of de novo identification of metabolites by tandem mass spectrometry. However, a thorough analysis of the initial motivation shows that the formal definition of MCS needs to be amended, since the input graph G actually possesses two extra properties, which are so far unexploited. This leads us to introduce in this paper a more precise model that we call Maximum Colorful Arborescence (MCA), and extensively study it in terms of algorithmic complexity. In particular, we show that exploiting the implied color hierarchy of the input graph can lead to polynomial algorithms. We also develop Fixed-Parameter Tractable (FPT) algorithms for the problem, notably using the “dual parameter” \(\ell \), defined as the number of vertices of G which are not kept in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an introduction to the analysis of branching vectors, see e.g. [5].

References

  1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer-Verlag, Heidelberg (1999)

    Book  MATH  Google Scholar 

  2. Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. In: Proceedings of Seventh European Conference on Computational Biology and Bioinformatics, ECCB 2008, vol. 24, no. 16, pp. i49–i55 (2008)

    Google Scholar 

  3. Böcker, S., Rasche, F., Steijger, T.: Annotating fragmentation patterns. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 13–24. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04241-6_2

    Chapter  Google Scholar 

  4. Chu, Y.J., Liu, T.H.: On shortest arborescence of a directed graph. Sci. Sinica 14(10), 1396 (1965)

    MathSciNet  MATH  Google Scholar 

  5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  6. Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pattern matching. J. Discrete Algorithms 9(1), 82–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fertin, G., Komusiewicz, C.: Graph Motif problems parameterized by dual. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016. LIPIcs, vol. 54, pp. 7:1–7:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  8. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Google Scholar 

  9. Lacroix, V., Fernandes, C.G., Sagot, M.: Motif search in graphs: application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 360–368 (2006)

    Article  Google Scholar 

  10. Rauf, I., Rasche, F., Nicolas, F., Böcker, S.: Finding maximum colorful subtrees in practice. J. Comput. Biol. 20(4), 311–321 (2013)

    Article  MathSciNet  Google Scholar 

  11. Scheubert, K., Hufsky, F., Rasche, F., Böcker, S.: Computing fragmentation trees from metabolite multiple mass spectrometry data. J. Comput. Biol. 18(11), 1383–1397 (2011)

    Article  MathSciNet  Google Scholar 

  12. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13(2), 133–144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. White, W.T.J., Beyer, S., Dührkop, K., Chimani, M., Böcker, S.: Speedy colorful subtrees. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 310–322. Springer, Cham (2015). doi:10.1007/978-3-319-21398-9_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Fradin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fertin, G., Fradin, J., Jean, G. (2017). Algorithmic Aspects of the Maximum Colorful Arborescence Problem. In: Gopal, T., Jäger , G., Steila, S. (eds) Theory and Applications of Models of Computation. TAMC 2017. Lecture Notes in Computer Science(), vol 10185. Springer, Cham. https://doi.org/10.1007/978-3-319-55911-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55911-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55910-0

  • Online ISBN: 978-3-319-55911-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics