Skip to main content

New Trends in Stem Cell Transplantation in Diabetes Mellitus Type I and Type II

  • Chapter
  • First Online:
Pancreas, Kidney and Skin Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Diabetes mellitus (DM) is reported as the most common metabolic disorder and considered major causes of morbidity and mortality. Type 1 DM (T1DM) is considered an autoimmune disease characterized by deficiency of the insulin secretion due to destruction of specific insulin-producing β-cells. Type 2 DM (T2DM) is defined as an endocrine disease associated with predominantly insulin resistance/metabolically active obese, adipocytokines abnormalities, and secondary development of β-cell dysfunction. With growing understanding of the pathogenesis of DM, alternative approaches aiming at repair and restoration of endogenous insulin production, regulation of metabolic processes with stem cell transplantation are increasingly considered as complements to current diabetes therapy strategies. However, the data on regenerative care in DM are not uniform. There are discrepancies between results received from the animal studies and data obtained by clinical investigations in this field. On the one hand, such inconsistencies have accompanied the fact that several types of stem cells were tested as perspective for regenerative strategy and nor all of stem cells were available in routine clinical practice. On the other hand, patients with different types of diabetes at several stages of evolution of the disease are failed to uniform considered candidates for stem cells transplantation and they probably are required a controversial approaches. Given the conflicting evidence concerning stem cell replacement in DM, the aim of the chapter is to explore, analyze, and summarize the data to clarify current knowledge and identify the future perspectives for regenerative care among DM patients. The present chapter accumulated contemporary knowledge regarding a paradigm of the regenerative therapy in DM. It is discussed the role of use of reprogramming stem cells, bone marrow-derived mononuclear cells, and lineage-specified progenitor cells in modern approaches of DM care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABMSCs:

Autologous bone marrow-derived mesenchymal stem cells

ADSCs:

Adipose-derived stem cells

CPC:

Circulating precursor cells

DM:

Diabetes mellitus

EPC:

Endothelial progenitor cells

ESCs:

Embryonic stem cells

PSCs:

Pluripotent stem cells

SCs:

Stem cells

T1DM:

Type one diabetes mellitus

T2DM:

Type two diabetes mellitus

References

  • Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P (2014) Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev 10(3):327–337

    Article  CAS  PubMed  Google Scholar 

  • Abraham NG, Li M, Vanella L et al (2008) Bone marrow stem cell transplant into intra-bone cavity prevents type 2 diabetes: role of heme oxygenase-adiponectin. J Autoimmun 30:128–135

    Article  CAS  PubMed  Google Scholar 

  • Aguayo-Mazzucato C, Bonner-Weir S (2010) Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 6:139–148

    Article  PubMed  Google Scholar 

  • Ali MA, Dayan CM (2009) The importance of residual endogenous beta-cell preservation in type 1 diabetes. Br J Diabetes Vasc Dis 9:6

    Article  Google Scholar 

  • Anastasia L, Pelissero G, Venerando B, Tettamanti G (2010) Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death Differ 17:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148:1160–1171

    Article  CAS  PubMed  Google Scholar 

  • Bai Q, Desprat R, Klein B et al (2013) Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective. Curr Gene Ther 13(2):93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Nur O, Russ HA, Efrat S et al (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Berezin AE (2014) Diabetes mellitus and cellular replacement therapy: expected clinical potential and perspectives. World J Diabetes 5(6):777–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Berezin AE (2016a) Endothelial progenitor cells dysfunction and impaired tissue reparation: the missed link in diabetes mellitus development. Diabetes Metab Syndr Clin Res Rev. [ahead of print]. doi:10.1016/j.dsx.2016.08.007

    Google Scholar 

  • Berezin AE (2016b) Metabolic memory phenomenon in diabetes mellitus: achieving and perspectives. Diabetes Metab Syndr Clin Res Rev 10(2 Suppl 1):S176–S183. doi:10.1016/j.dsx.2016.03.016

    Article  Google Scholar 

  • Berezin A (2016c) Biomarkers for cardiovascular risk in diabetic patients. Heart. [epub ahead of print]. doi:10.1136/heartjnl-2016-310197

    PubMed  Google Scholar 

  • Berezin (2016d) Endothelial repair in diabetes: the causative role of progenitor cells dysfunction? J Clin Epigenet 2(2):22–24

    Google Scholar 

  • Bhansali A, Upreti V, Khandelwal N et al (2009) Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev 18:1407–1415

    Article  CAS  PubMed  Google Scholar 

  • Bhonde RR, Sheshadri P, Sharma S et al (2014) Making surrogate β-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol 46:90–102

    Article  CAS  PubMed  Google Scholar 

  • Boland MJ, Hazen JL, Nazor KL et al (2012) Generation of mice derived from induced pluripotent stem cells. J Vis Exp 69:e4003

    Google Scholar 

  • Burns CJ, Persaud SJ, Jones PM (2006) Diabetes mellitus: a potential target for stem cell therapy. Curr Stem Cell Res Ther 1(2):255–266

    Article  CAS  PubMed  Google Scholar 

  • Burt RK, Oyama Y, Traynor A et al (2002) Hematopoietic stem cell therapy for type 1 diabetes: induction of tolerance and islet cell neogenesis. Autoimmune Rev 1:133–138

    Article  CAS  Google Scholar 

  • Cade WT (2008) Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 88(11):1322–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Calafiore R, Montanucci P, Basta G (2014) Stem cells for pancreatic β-cell replacement in diabetes mellitus: actual perspectives. Curr Opin Organ Transplant 19(2):162– 168.

    Google Scholar 

  • Chen YJ, Finkbeiner SR, Weinblatt D et al (2014) De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep 6(6):1046–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chidgey AP, Layton D, Trounson A, Boyd RL (2008) Tolerance strategies for stem-cell-based therapies. Nature 453:330–337

    Article  CAS  PubMed  Google Scholar 

  • Dadheech N, Srivastava A, Paranjape N et al (2015) Swertisin an anti-diabetic compound facilitate islet neogenesis from pancreatic stem/progenitor cells via p-38 MAP kinase-SMAD pathway: an in-vitro and in-vivo study. PLoS One 10(6):e0128244

    Article  PubMed  PubMed Central  Google Scholar 

  • Dave S (2014) Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: a new approach to treat type 1 diabetes. Adv Biomed Res 3:266

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng W (2010) Exploiting pluripotency for therapeutic gain. Panminerva Med 52(2):167–173

    PubMed  Google Scholar 

  • El-Tantawy WH, Haleem EN (2014) Therapeutic effects of stem cell on hyperglycemia, hyperlipidemia, and oxidative stress in alloxan-treated rats. Mol Cell Biochem 391(1–2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Ezquer FE, Ezquer ME, Parrau DB et al (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14:631–640

    Article  CAS  PubMed  Google Scholar 

  • Fu X (2014) The immunogenicity of cells derived from induced pluripotent stem cells. Cell Mol Immunol 11(1):14–16

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Xu Y (2012) Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 4(6):55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao J, Zhu W, Sheng C et al (2009) Human parthenogenetic embryonic stem cells: one potential resource for cell therapy. Sci China C Life Sci 52(7):599–602

    Article  PubMed  Google Scholar 

  • Hindley C, Philpott A (2013) The cell cycle and pluripotency. Biochem J 451(2):135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holditch SJ, Terzic A, Ikeda Y (2014) Concise review: pluripotent stem cell-based regenerative applications for failing β-cell function. Stem Cells Transl Med 3(5):653–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howangyin KY, Silvestre JS (2014) Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction. Arterioscler Thromb Vasc Biol 34(6):1126–1135

    Article  CAS  PubMed  Google Scholar 

  • Jafarian A, Taghikhani M, Abroun S et al (2014) Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep 41(7):4783–4794

    Article  CAS  PubMed  Google Scholar 

  • Jang J, Yoo JE, Lee JA et al (2012) Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp Mol Med 44(3):202–213

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Han Y, Cao X (2014) Induced pluripotent stem cell (iPSCs) and their application in immunotherapy. Cell Mol Immunol 11(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Moreno CM, de Gracia Herrera-Gomez I, Lopez-Noriega L et al (2015) A simple high efficiency intra-islet transduction protocol using lentiviral vectors. Curr Gene Ther 15 (4): 436–446

    Google Scholar 

  • Jun Y, Kang AR, Lee JS et al (2014) Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials 35(17):4815–4826

    Article  CAS  PubMed  Google Scholar 

  • Jung Y, Bauer G, Nolta JA (2012) Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 30(1):42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang L, Kou Z, Zhang Y et al (2010) Induced pluripotent stem cells (iPSCs) – a new era of reprogramming. J Genet Genomics 37(7):415–421

    Article  CAS  PubMed  Google Scholar 

  • Kao CF, Chuang CY, Chen CH et al (2008) Human pluripotent stem cells: current status and future perspectives. Chin J Physiol 51(4):214–225

    PubMed  Google Scholar 

  • Katuchova J, Harvanova D, Spakova T et al (2015) Mesenchymal stem cells in the treatment of type 1 diabetes mellitus. Endocr Pathol 26(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Khosravi-Maharlooei M, Hajizadeh-Saffar E, Tahamtani Y, Basiri M, Montazeri L, Khalooghi K, et al (2015) Therapy of Endocrine Disease: Islet transplantation for type 1 diabetes: so close and yet so far away. Eur J Endocrinol 173(5):R165– R183

    Google Scholar 

  • Kim C (2014) Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 49(1):7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima N (2014) In vitro reconstitution of pancreatic islets. Organogenesis 10(2):225–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudva YC, Ohmine S, Greder LV et al (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1(6):451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lampeter EF, McCann SR, Kolb H (1998) Transfer of insulin-dependent diabetes by bone marrow transplantation. Lancet 351:568–569

    Article  CAS  PubMed  Google Scholar 

  • Li M, Chen M, Han W et al (2010) How far are induced pluripotent stem cells from the clinic? Ageing Res Rev 9(3):257–264

    Article  CAS  PubMed  Google Scholar 

  • Lian Z, Yin X, Li H et al (2014) Synergistic effect of bone marrow-derived mesenchymal stem cells and platelet-rich plasma in streptozotocin-induced diabetic rats. Ann Dermatol 26(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew CG (2010) Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the optimization of protocols. Rev Diabet Stud 7(2):82–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindahl M, Danilova T, Palm et al (2014) MANF is indispensable for the proliferation and survival of pancreatic β cells. Cell Rep 7(2):366–375

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhao T (2013) Clinical therapy using iPSCs: hopes and challenges. Genomics Proteomics Bioinforma 11(5):294–298

    Article  CAS  Google Scholar 

  • Ludwig B, Ludwig S (2015) Transplantable bioartificial pancreas devices: current status and future prospects. Langenbecks Arch Surg 400(5):531–540

    Google Scholar 

  • Lysy PA, Weir GC, Bonner-Weir S (2012) Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Transl Med 1(2):150–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Xie M, Laurent T, Ding S (2013) Progress in the reprogramming of somatic cells. Circ Res 112(3):562–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matveyenko A, Vella A (2015) Regenerative medicine in diabetes. Mayo Clin Proc 90(4):546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayhew CN, Wells JM (2010) Converting human pluripotent stem cells into beta-cells: recent advances and future challenges. Curr Opin Organ Transplant 15(1):54–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore SJ, Gala-Lopez BL, Pepper AR et al (2015) Bioengineered stem cells as an alternative for islet cell transplantation. World J Transplant 5(1):1–10. doi:10.5500/wjt.v5.i1.1

    PubMed  PubMed Central  Google Scholar 

  • Naujok O, Lenzen S (2012) Pluripotent stem cells for cell replacement therapy of diabetes. Dtsch Med Wochenschr 137(20):1062–1066

    Article  CAS  PubMed  Google Scholar 

  • Naujok O, Burns C, Jones PM et al (2011) Insulin-producing surrogate β-cells from embryonic stem cells: are we there yet? Mol Ther 19(10):1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nostro MC, Keller G (2012) Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Semin Cell Dev Biol 23(6):701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nsair A, MacLellan WR (2011) Induced pluripotent stem cells for regenerative cardiovascular therapies and biomedical discovery. Adv Drug Deliv Rev 63(4–5):324–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwaneri C, Cooper H, Bowen-Jones D (2013) Mortality in type 2 diabetes mellitus: magnitude of the evidence from a systematic review and meta-analysis. Brit J Diabetes Vasc Dis 13(4):192–207

    Article  Google Scholar 

  • Pan XH, Song QQ, Dai JJ et al (2014) Transplantation of bone marrow mesenchymal stem cells for the treatment of type 2 diabetes in a macaque model. Cells Tissues Organs 198(6):414–427

    Article  Google Scholar 

  • Pandian GN, Taniguchi J, Sugiyama H (2014) Cellular reprogramming for pancreatic β-cell regeneration: clinical potential of small molecule control. Clin Translat Med 3:6

    Article  Google Scholar 

  • Paneni F, Beckman JA, Creager MA et al (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34(31):2436–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philonenko ES, Shutova MV, Chestkov IV et al (2011) Current progress and potential practical application for human pluripotent stem cells. Int Rev Cell Mol Biol 292:153–196

    Article  CAS  PubMed  Google Scholar 

  • Qi SD, Smith PD, Choong PF (2012) Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ J Surg 84(6):E1–11

    Article  PubMed  Google Scholar 

  • Rabelink TJ, Little MH (2013) Stromal cells in tissue homeostasis: balancing regeneration and fibrosis. Nat Rev Nephrol 9(12):747–753

    Article  CAS  PubMed  Google Scholar 

  • Reiland S, Salekdeh GH, Krijgsveld J (2011) Defining pluripotent stem cells through quantitative proteomic analysis. Expert Rev Proteomics 8(1):29–42

    Article  CAS  PubMed  Google Scholar 

  • Russ HA, Parent AV, Ringler JJ et al (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34:1759–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambataro M, Seganfreddo E, Canal F et al (2014) Prognostic significance of circulating and endothelial progenitor cell markers in type 2 diabetic foot. Int J Vasc Med 2014:589412

    PubMed  PubMed Central  Google Scholar 

  • Schroeder IS (2012) Potential of pluripotent stem cells for diabetes therapy. Curr Diab Rep 12(5):490–498

    Article  PubMed  Google Scholar 

  • Schuetz C, Markmann JF (2015) Immunogenicity of β-cells for autologous transplantation in type 1 diabetes. Pharmacol Res 98:60–68

    Article  CAS  PubMed  Google Scholar 

  • Scully T (2012) Diabetes in numbers. Nature 485:S2–S3

    Article  CAS  PubMed  Google Scholar 

  • Sener LT, Albeniz I (2015) Challenge of mesenchymal stem cells against diabetic foot ulcer. Curr Stem Cell Res Ther 10:530–534

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, VandeBerg JL (2015) Experimental approaches to derive CD34+ progenitors from human and nonhuman primate embryonic stem cells. Am J Stem Cells 4(1):32–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soejitno A, Prayudi PK (2011) The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2(5):197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn YD, Han JW, Yoon YS (2012) Generation of induced pluripotent stem cells from somatic cells. Prog Mol Biol Transl Sci 111:1–26

    Article  CAS  PubMed  Google Scholar 

  • Sommer AG, Rozelle SS, Sullivan S et al (2012) Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector. J Vis Exp 68:pii: 4327

    Google Scholar 

  • Soria B (2001) In-vitro differentiation of pancreatic beta-cells. Differentiation 68(4–5):205–219

    Article  CAS  PubMed  Google Scholar 

  • Tancos Z, Nemes C, Polgar Z et al (2012) Generation of rabbit pluripotent stem cell lines. Theriogenology 78(8):1774–1786

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Xiao X, Liu D et al (2014) Autografting of bone marrow mesenchymal stem cells alleviates streptozotocin-induced diabetes in miniature pigs: real-time tracing with MRI in vivo. Int J Mol Med 33(6):1469–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CJ, Bolton EM, Bradley JA (2011) Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond Ser B Biol Sci 366(1575):2312–2322

    Article  CAS  Google Scholar 

  • Teng S, Liu C, Krettek C et al (2013) The application of induced pluripotent stem cells for bone regeneration: current progress and prospects. Tissue Eng Part B Rev 20(4):328–339

    Article  PubMed  Google Scholar 

  • Terzic A, Behfar A (2014) Regenerative heart failure therapy headed for optimization. Eur Heart J 35:1231–1234

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakkar UG, Trivedi HL, Vanikar AV et al (2015) Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy 17(7):940–947

    Article  CAS  PubMed  Google Scholar 

  • Trivedi HL, Vanikar AV, Thakker U et al (2008) Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc 40:1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Voltarelli JC, Couri CE, Oliveira MC et al (2011) Stem cell therapy for diabetes mellitus. Kidney Int 1(3):94–98

    Article  Google Scholar 

  • Weir GC, Cavelti-Weder C, Bonner-Weir S (2011) Stem cell approaches for diabetes: towards beta cell replacement. Genome Med 3(9):61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao F, Ma L, Zhao M et al (2014) Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice. PLoS One 9(3):e90387

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeo JC, Ng HH (2011) Transcriptomic analysis of pluripotent stem cells: insights into health and disease. Genome Med 3(10):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Ding S (2010) Evolution of induced pluripotent stem cell technology. Curr Opin Hematol 17(4):276–280

    Article  PubMed  Google Scholar 

  • Zou C, Chou BK, Dowey SN et al (2012) Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines. Stem Cells Dev 21(12):2298–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Berezin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berezin, A.E. (2017). New Trends in Stem Cell Transplantation in Diabetes Mellitus Type I and Type II. In: Pham, P. (eds) Pancreas, Kidney and Skin Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-55687-1_3

Download citation

Publish with us

Policies and ethics