Skip to main content

Role of PIWI-Interacting RNA (piRNA) as Epigenetic Regulation

  • Reference work entry
  • First Online:

Abstract

PIWI-interacting RNAs are a distinct group of small noncoding RNAs that are abundantly expressed in the animal germ line and are involved in silencing transposable genetic elements to maintain genome integrity. Accumulating evidence suggests that PIWI-interacting RNAs are also capable of mediating DNA methylation and thus can silence genes related to cancer, acting either as tumor suppressors or oncogenes. In recent years, several studies have significantly improved the understanding of PIWI-interacting RNA biogenesis, characterization, and function. Here, we discuss these recent findings and highlight some aspects of the role of PIWI-interacting RNAs in epigenetic modifications, the possible cancer implications and the effect of nutrition. Finally, we provide a brief description of the PIWI-interacting RNAs data analysis workflow and suggest some potential biological and clinical applications of these important molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

10A:

Adenosine at position 10

AGO3:

Argonaute 3

AUB:

Aubergine

ChIP:

Chromatin immunoprecipitation

CTCs:

Circulating tumor cells

DMR:

Differentially methylated region

DNMT3L:

DNA-methyltransferase 3-like

DNMTs:

DNA methyltransferases

EMT:

Epithelial mesenchymal transition

ERM:

Ezrin/Radixin/Moesin

FSH:

Follicle-stimulating hormone

H3K9:

Histone H3 lysine 9

HENMT1:

Hen methyltransferase homolog 1

HMTs:

Histone methyltransferases

HP1:

Heterochromatin 1 protein

LINE1:

Long interspersed element-1

lncRNAs:

Long noncoding RNAs

mRNA:

Messenger RNA

miRNAs:

MicroRNAs

ncRNAs:

Noncoding RNAs

NGS:

Next-generation sequencing

nt:

Nucleotides

piRISC:

piRNA-Induced silencing complex

piRNAs:

PIWI-interacting RNAs

piRNA-seq:

piRNA sequencing

PIWI:

P-element Induced Wimpy Testis

PNLDC1:

Poly(A)-specific ribonuclease PARN-like domain-containing protein 1

pre-piRNA:

piRNA precursor

SAM:

S-adenosylmethionine

SDMAs:

Symmetric dimethylarginines

siRNAs:

Small interfering RNAs

ssRNA:

Single-stranded RNA

Su (var) 3–9:

Suppressor of variegation 3–9

TDRD:

Tudor domain

TEs:

Transposable elements

Zuc:

Zucchini

References

  • Aravin A, Gaidatzis D, Pfeffer S et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207

    CAS  PubMed  Google Scholar 

  • Assumpção CB, Calcagno DQ, Araújo TM et al (2015a) The role of piRNA and its potential clinical implications in cancer. Epigenomics 7(6):975–984

    Article  PubMed  CAS  Google Scholar 

  • Assumpção MB, Moreira FC, Hamoy IG et al (2015b) High-throughput miRNA sequencing reveals a field effect in gastric cancer and suggests an epigenetic network mechanism. Bioinform Biol Insights 9:111–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Assumpção PP, Dos Santos SE, Dos Santos AK et al (2016) The adjacent to tumor sample trap. Gastric Cancer 19(3):1024–1025

    Article  PubMed  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    Article  PubMed  CAS  Google Scholar 

  • Brayet J, Zehraoui F, Jeanson-Leh L et al (2014) Towards a piRNA prediction using multiple kernel fusion and support vector machine. Bioinformatics 30(17):i364–i370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennecke J, Aravin AA, Stark A et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–10103

    Article  CAS  PubMed  Google Scholar 

  • Busch J, Ralla B, Jung M et al (2015) Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J Exp Clin Cancer Res 34(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calcagno DQ, Smith MAC, Burbano RR et al (2015) Cancer type-specific epigenetic changes: gastric cancer. Methods Mol Biol 1238:79–101

    Article  PubMed  Google Scholar 

  • Chen J, Xue Y (2016) Emerging roles of non-coding RNAs in epigenetic regulation. Sci China Life Sci 59:227–235

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Guo JM, Xiao BX et al (2011) piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta 412(17–18):1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Deng H, Xiao B et al (2012) piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 315(1):12–17

    Article  CAS  PubMed  Google Scholar 

  • Cordaux R, Bater MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro A, Navarro A, Gaya A et al (2016) PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget 7(29):46002–46013

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui L, Lou Y, Zhang X et al (2011) Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 44(13):1050–10571

    Article  CAS  PubMed  Google Scholar 

  • Czech B, Hannon GJ (2016) One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci 41(4):324–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis C, Brasset E, Sarkar A et al (2016) Export of piRNA precursors by EJC triggers assembly of cytoplasmic Yb-body in Drosophila. Nat Commun 7:13739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira HJ, Heyn H, Garcia del Muro X, Vidal A, Larriba S, Muñoz C, Villanueva A, Esteller M (2014) Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics 9(1):113–118. https://doi.org/10.4161/epi.27237. Epub 2013 Nov 18

  • Fu Q, Wang PJ (2014) Mammalian piRNAs: biogenesis, function, and mysteries. Spermatogenesis 4(1):e27889

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu A, Di Jacobs, Hoffman AE et al (2015) PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis 36(10):1094–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebert D, Ketting RF, Zischler H et al (2015) piRNAs from pig testis provide evidence for a conserved role of the Piwi pathway in post-transcriptional gene regulation in mammals. PLoS One 10(5):e0124860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gigek CO, Chen ES, Calcagno DQ et al (2012) Epigenetic mechanisms in gastric cancer. Epigenomics 4(3):279–294

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Liang G, Hawken PAR et al (2015) Roles of small RNAs in the effects of nutrition on apoptosis and spermatogenesis in the adult testis. Sci Rep 5:10372

    Article  PubMed  PubMed Central  Google Scholar 

  • Han BW, Wang W, Li C (2015) piRNA-guided transposon cleavage initiljates zucchini-dependent, phased piRNA production. Science 348(6236):817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashim A, Rizzo F, Marchese G et al (2014) RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget 5(20):9901–9910

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirakata S, Siomi MC (2016) piRNA biogenesis in the germline: from transcription of piRNA genomic sources to piRNA maturation. Biochim Biophys Acta 1859(1):82–92

    Article  CAS  PubMed  Google Scholar 

  • Horwich MD, Li C, Matranga C et al (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17(14):1265–1272

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Hu H, Xue X et al (2013a) Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 15(7):563–568b

    Article  CAS  PubMed  Google Scholar 

  • Huang XA, Yin INH, Sweeney S et al (2013b) A major epigenetic programming mechanism guided by piRNAs. Dev Cell 24:502–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humberto JF, Heyn H, del Muro XG, Vidal A, Larriba S, Muñoz C, Villanueva A, Esteller M (2014) Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics 9(1):113–118

    Article  CAS  Google Scholar 

  • Ipsaro JJ, Haase AD, Knott SR et al. (2012) The structural biochemistry of zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491(7423):279–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itou D, Shiromoto Y, Yukiho SY et al (2015) Induction of DNA methylation by artificial piRNA production in male germ cells. Curr Biol 25:901–906

    Article  CAS  PubMed  Google Scholar 

  • Izumi N, Shoji K, Sakaguchi Y et al (2016) Identification and functional analysis of the pre-piRNA 3′ trimmer in silkworms. Cell 164(5):962–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jie Y, Wang Y, Fang B, Zhang S, Cheng B (2016) piR-651 and its function in 95-D lung cancer cells. Biomed Rep

    Google Scholar 

  • Kamminga LM, Luteijn MJ, Broeder MJ et al (2010) Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J 29(21):3688–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  • Kin T, Yamada K, Terai G et al (2007) fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res 35:D145–D148

    Article  CAS  PubMed  Google Scholar 

  • Kirino Y, Mourelatos Z (2007) Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat Struct Mol Biol 14(4):347–348

    Article  CAS  PubMed  Google Scholar 

  • Krakowsky RH, Tollefsbol TO (2015) Impact of nutrition on non-coding RNA epigenetics in breast and gynecological cancer. Front Nutr 2:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwon C, Tak H, Rho M et al (2014) Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun 446(1):218–223

    Article  CAS  PubMed  Google Scholar 

  • Law PT, Qin H, Ching AK et al (2013) Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol 58(6):1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Le Thomas A, Toth KF, Aravin AA (2014) To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol 15(1):204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, Luo Y, Gao Y, Yang Y, Wang Y, Xu Y, Tan S, Zhang Y, Duan J, Yang Y (2016) piR-651 promotes tumor formation in non-small cell lung carcinoma through the upregulation of cyclin D1 and CDK4. Int J Mol Med 38(3):927–936. https://doi.org/10.3892/ijmm.2016.2671. Epub 2016 Jul 11

  • Li Y, Wu X, Gao H, Jin JM, Li AX, Kim YS, Pal SK, Nelson RA, Lau CM, Guo C, Mu B, Wang J, Wang F, Wang J, Zhao Y, Chen W, Rossi JJ, Weiss LM, Wu H (2015) Piwi-interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol Med 21:381–388. https://doi.org/10.2119/molmed.2014.00203

  • Lim SL, Qu ZP, Kortschak RD et al (2015) HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet 11(10):e1005620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manakov SA, Pezic D, Marinov GK et al (2015) MIWI2 and MILI have differential effects on piRNA biogenesis and DNA methylation. Cell Rep 12(8):1234–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani SR, Juliano CE (2013) Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 80(8):632–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez VD, Enfield KS, Rowbotham DA et al (2015) An atlas of gastric PIWI interacting RNA transcriptomes and their utility for identifying signatures of gastric cancer recurrence. Gastric Cancer 19(2):660–6655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins NNF, Oliveira KCS, Bona AB et al (2016) The emerging role of miRNAs and their clinical implication in biliary tract cancer. Gastroenterol Res Pract 2016:9797410–9797420

    Google Scholar 

  • Mei Y, Wang Y, Kumari P et al (2015) A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun 6:7316

    Article  CAS  PubMed  Google Scholar 

  • Mohn F, Handler D, Brennecke J (2015) piRNA-guided slicing specifies transcripts for zucchini-dependent, phased piRNA biogenesis. Science 348(6236):812–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller S, Raulefs S, Bruns P et al (2015) Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer 14:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ng KW, Anderson C, Marshall EA et al (2016) Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 5(5):1–13

    Google Scholar 

  • Nishimasu H, Ishizu H, Saito K et al (2012) Structure and function of zucchini endoribonuclease in piRNA biogenesis. Nature 491:284–287

    Article  CAS  PubMed  Google Scholar 

  • Oliveira KCS, Araújo MT, Albuquerque CI et al (2016) Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol 22(35):7951–7962

    Article  Google Scholar 

  • Oliveri D, Sykora MM, Sachidanandam R et al (2010) An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J 29:3301–3317

    Article  CAS  Google Scholar 

  • Peng JC, Lin H (2013) Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism. Curr Opin Cell Biol 25(2):190–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasethupathy P, Antonov I, Sheridan R et al (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149:693–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  • Ross RJ, Weiner MM, Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505(7483):353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sai Lakshmi S, Agrawal S (2008) piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res 36:D173–D177

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Ishizu H, Komai M et al (2010) Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev 24:2493–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senti KA, Jurczak D, Sachidanandam R et al (2015) piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire. Genes Dev 29:1747–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth KF, Pezic D, Stuwe E et al (2016) The piRNA pathway guards the germline genome against transposable elements. Adv Exp Med Biol 886:51–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trasler JM (2009) Epigenetics in spermatogenesis. Mol Cell Endocrinol 306:33–36

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Han BW, Tipping C et al (2015) Slicing and binding by Ago3 or Aub trigger Piwi-bound piRNA production by distinct mechanisms. Mol Cell 59(5):819–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Tomizawa S, Mitsuya K et al (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332:848–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weick EM, Miska EA (2014) piRNAs: from biogenesis to function. Development 141(18):3458–3471

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Wu QL, Sun CY et al (2014) piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 29(1):196–206

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Wang YW, Fang BB, Zhang SJ, Cheng BL (2016) piR-651 and its function in 95-D lung cancer cells. Biomed Rep 4(5):546–550. Epub 2016 Mar 8

    Google Scholar 

  • Yuping L, Wu X (2015) Piwi-interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol Med 21(1):1

    Google Scholar 

  • Zhang H, Ren Y, Xu H et al (2013) The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol 22(4):217–223

    Article  PubMed  Google Scholar 

  • Zhang P, Si X, Geir Skogerbo G et al (2014) piRBase: a web resource assisting piRNA functional study. Database (Oxford) 2014:bau110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Queiroz Calcagno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Calcagno, D.Q., Mota, E.R.d., Moreira, F.C., de Sousa, S.B.M., Burbano, R.R., Assumpção, P.P. (2019). Role of PIWI-Interacting RNA (piRNA) as Epigenetic Regulation. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics