Skip to main content

Forward and Reverse Epigenomics in Embryonic Stem Cells

  • Reference work entry
  • First Online:
Book cover Handbook of Nutrition, Diet, and Epigenetics
  • 118 Accesses

Abstract

The self-renewing and pluripotent properties of ESCs make them a precious tool for the advancement of general biological research, discerning the process of differentiation and embryonic development, disease modeling, drug discovery, drug testing, and, ultimately, cell- and tissue-based regenerative medicine. To further these goals, it is imperative that a deep and comprehensive understanding of all aspects of ESC biology are attained, particularly the transcriptional program and its regulation.

Chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (NGS) (ChIP-seq) pinpoints the binding locations of factors involved in epigenomic regulation of transcription such as transcription factors, modifications on histone proteins, chromatin modifiers and remodelers, and structural and insulator proteins. Each binding map by itself leads to insights into the mechanism of regulation of a specific factor and its downstream target genes upon which it exerts its regulatory effect leading to the discovery of the epigenomic “hallmarks” of ESCs which govern these cells’ state and fate.

On the other hand, an integration of a combination of binding maps enables researchers to gain an additional and complementary perspective on epigenomic regulation from the genomic point of view. By combining over 450 ChIP-seq datasets from large consortiums and singleton experimental efforts in our BindDB platform, we discovered a remarkably extensive epigenomic profile at active genes in ESCs. Based on this platform, we generated a robust in silico simulation of a reverse-ChIP protocol via implementation of an easy querying and analysis webtool (http://bind-db.huji.ac.il/) to enable researchers to learn about which epigenomic features bind their genes or genomic regions of interest in ESCs. By querying several gene groups as case studies, we noted the participation of histone modifications, chromatin modifiers, chromatin remodelers, transcription factors, and structural proteins in the regulation of the same pieces of DNA, indicating how crucial and precise the epigenomic mechanism must be in ESCs. This utilization of both a forward and reverse approach to epigenomic research will greatly advance the acquisition of a more complete picture of the mechanisms of transcriptional regulation in ESCs and improve the ability to harness it toward advancing the research and medical potential of these unique cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BED:

Browser extensible data format

ChIP:

Chromatin immunoprecipitation

ChIP-chip:

Chromatin immunoprecipitation followed by hybridization to microarray

ChIP-seq:

Chromatin immunoprecipitation followed by sequencing

DNA:

Deoxyribonucleic acid

DNMT:

DNA Methyltransferase

ENCODE:

Encyclopedia of DNA elements (consortium)

ESC:

Embryonic stem cell

HAT:

Histone acetyl transferase

HDAC:

Histone deacetylase

HDM:

Histone demethylase

Hi-C:

High-throughput chromosome conformation capture

HMT:

Histone methyltransferase

MBD:

Methyl-binding domain

RNA:

Ribonucleic acid

TAD:

Topologically associating domain

TF:

Transcription factor

References

  • Aaronson Y, Livyatan I, Gokhman D, Meshorer E (2016) Systematic identification of gene family regulators in mouse and human embryonic stem cells. Nucleic Acids Res 44:4080–4089

    Article  CAS  Google Scholar 

  • Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, Bock C, Boehm B, Campo E, Caricasole A et al (2012) BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol 30:224–226

    Article  CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    Article  CAS  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M et al (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    Article  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  Google Scholar 

  • Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181

    Article  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  Google Scholar 

  • Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR et al (2010) The NIH Roadmap Epigenomics mapping consortium. Nat Biotechnol 28:1045–1048

    Article  CAS  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  CAS  Google Scholar 

  • Brandeis M, Ariel M, Cedar H (1993) Dynamics of DNA methylation during development. BioEssays: News Rev Mol Cell Dev Biol 15:709–713

    Article  CAS  Google Scholar 

  • Burton A, Torres-Padilla ME (2014) Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 15:723–734

    Article  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  CAS  Google Scholar 

  • Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136:2311–2322

    Article  CAS  Google Scholar 

  • Chen L, Daley GQ (2008) Molecular basis of pluripotency. Hum Mol Genet 17:R23–R27

    Article  CAS  Google Scholar 

  • Chen T, Dent SY (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15:93–106

    Article  CAS  Google Scholar 

  • Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    Article  CAS  Google Scholar 

  • Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic loci. Cell 136:175–186

    Article  CAS  Google Scholar 

  • Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH et al (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2:437–447

    Article  CAS  Google Scholar 

  • ENCODE (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  Google Scholar 

  • Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852

    Article  CAS  Google Scholar 

  • Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12:36–47

    Article  CAS  Google Scholar 

  • Gokhman D, Livyatan I, Sailaja BS, Melcer S, Meshorer E (2013) Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nat Struct Mol Biol 20:119–126

    Article  CAS  Google Scholar 

  • Heng JC, Ng HH (2010) Transcriptional regulation in embryonic stem cells. Adv Exp Med Biol 695:76–91

    Article  CAS  Google Scholar 

  • Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–435

    Article  CAS  Google Scholar 

  • Kawamata M, Ochiya T (2010) Establishment of embryonic stem cells from rat blastocysts. Methods Mol Biol 597:169–177

    Article  CAS  Google Scholar 

  • Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155

    Article  CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061

    Article  CAS  Google Scholar 

  • Kraushaar DC, Zhao K (2013) The epigenomics of embryonic stem cell differentiation. Int J Biol Sci 9:1134–1144

    Article  Google Scholar 

  • Livyatan I, Aaronson Y, Gokhman D, Ashkenazi R, Meshorer E (2015) BindDB: an integrated database and Webtool platform for “reverse-ChIP” epigenomic analysis. Cell Stem Cell 17:647–648

    Article  CAS  Google Scholar 

  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440

    Article  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  Google Scholar 

  • Mattout A, Biran A, Meshorer E (2011) Global epigenetic changes during somatic cell reprogramming to iPS cells. J Mol Cell Biol 3:341–350

    Article  Google Scholar 

  • Mayhall EA, Paffett-Lugassy N, Zon LI (2004) The clinical potential of stem cells. Curr Opin Cell Biol 16:713–720

    Article  CAS  Google Scholar 

  • Melcer S, Meshorer E (2010) Chromatin plasticity in pluripotent cells. Essays Biochem 48:245–262

    Article  CAS  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  Google Scholar 

  • Morey L, Santanach A, Di Croce L (2015) Pluripotency and epigenetic factors in mouse embryonic stem cell fate regulation. Mol Cell Biol 35:2716–2728

    Article  CAS  Google Scholar 

  • Mountford P, Nichols J, Zevnik B, O'Brien C, Smith A (1998) Maintenance of pluripotential embryonic stem cells by stem cell selection. Reprod Fert Develop 10:527–533

    Article  CAS  Google Scholar 

  • Paranjpe SS, Veenstra GJ (2015) Establishing pluripotency in early development. Biochim Biophys Acta 1849:626–636

    Article  CAS  Google Scholar 

  • Pritsker M, Doniger TT, Kramer LC, Westcot SE, Lemischka IR (2005) Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA 102:14290–14295

    Article  CAS  Google Scholar 

  • Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330

    Article  Google Scholar 

  • Sanchez-Castillo M, Ruau D, Wilkinson AC, Ng FS, Hannah R, Diamanti E, Lombard P, Wilson NK, Gottgens B (2015) CODEX: a next-generation sequencing experiment database for the haematopoietic and embryonic stem cell communities. Nucleic Acids Res 43:D1117–D1123

    Article  CAS  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  CAS  Google Scholar 

  • Tee WW, Reinberg D (2014) Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development 141:2376–2390

    Article  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  • Torres CM, Biran A, Burney MJ, Patel H, Henser-Brownhill T, Cohen AS, Li Y, Ben-Hamo R, Nye E, Spencer-Dene B et al (2016) The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science 353:1514

    Google Scholar 

  • Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, Gnirke A, Meissner A (2015) Transcription factor binding dynamics during human ES cell differentiation. Nature 518:344–349

    Article  CAS  Google Scholar 

  • Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y et al (2012) Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22:1798–1812

    Article  CAS  Google Scholar 

  • Wang Q, Huang J, Sun H, Liu J, Wang J, Wang Q, Qin Q, Mei S, Zhao C, Yang X et al (2014) CR Cistrome: a ChIP-Seq database for chromatin regulators and histone modification linkages in human and mouse. Nucleic Acids Res 42:D450–D458

    Article  CAS  Google Scholar 

  • Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319

    Article  CAS  Google Scholar 

  • Xu H, Baroukh C, Dannenfelser R, Chen EY, Tan CM, Kou Y, Kim YE, Lemischka IR, Ma'ayan A (2013) ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells. Database: J Biol Databases Curation 2013:bat045

    Google Scholar 

  • Yeo JC, Ng HH (2013) The transcriptional regulation of pluripotency. Cell Res 23:20–32

    Article  CAS  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  Google Scholar 

  • Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954

    Article  CAS  Google Scholar 

  • Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, Koebbe BC, Nielsen C, Hirst M, Farnham P et al (2011) The human epigenome browser at Washington University. Nat Methods 8:989–990

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Meshorer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Livyatan, I., Meshorer, E. (2019). Forward and Reverse Epigenomics in Embryonic Stem Cells. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics